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Abstract

Electroencephalography (EEG) is utilised to analyse faint brain signals, which

vary in amplitude and frequency depending on brain state during emotions,

movement and motor effects. EEG and Brain-Computer Interface (BCI) technology

combined with machine learning is deployed in prosthesis control to help amputee

and people suffering from severe injuries. In this work, we utilise the Wavelet

Transform (WT) to extract EEG features for optimal prosthetic arm control. Unlike

most of research work, our work is based upon high-resolution EEG data set (with

2-kHz sampling frequency), dual-channel EEG acquisition module and large-size

scalograms, which accounts for the need of data augmentation techniques

necessary in deep learning models. We present our results of performance

evaluation of 1-D and scalograms classifiers for optimal prosthetic BCI arm control

system. We designed our optimal control system using five 1-D Wavelet classifiers

including Linear Discriminant Analysing (LDA) and Multi-Layer Perceptron (MLP)

as well as 2-D representations of EEG signals (scalograms). The EEG data set

was accumulated with the help of 7 subjects who performed 4 different mental

activities during each recording session. Each mental activity was recorded during

8 seconds using a dual-channel EEG acquisition module, which was set up at 2

kHz sampling frequency. The scalograms are generated during training using

resampled EEG data at 500 Hz, which produced scalograms with sizes of

1500×300 pixels.
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Our performance evaluation results showed high training and testing

accuracies for 1-D Wavelet classifiers and scalograms as well. The optimisation

results have shown that with the scalograms and 2-D CNN classifier the optimal

performance was determined (where training accuracy was 98%) after discarding

2 seconds of the 8-second EEG data and resizing the resulting scalograms to 22%

of their maximum size. On the other hand, 1-D Wavelet classifiers showed optimal

performance with 95% training accuracy and trimming of 4 seconds. The overall

performance of 1-D Wavelet classifiers, MLP in particular, is advantageous in the

context of prosthetic arm control due to the high training speed and reduction of

EEG data length by half (4 seconds).

The complete designed system consists of EEG acquisition, BCI and control

modules hosted in a raspberry pi 4, single-board computer system. The designed

BCI control system is operated through a comprehensive Graphical User Interface

(GUI) using Python.

Our contribution in this field include the design of an optimal BCI prosthetic arm

control system with emphasis on wide-bandwidth EEG data set, low number of EEG

channels, high accuracy and affordable processing hardware of raspberry pi 4. The

application of the designed performance optimisation procedure for prosthetic arm

control is beneficial to other similar BCI applications.

Key words : EEG, Wavelets, Deep learning, Prosthetic arm control

1 Introduction

Brain-Computer Interface (BCI) combined with scalograms classifiers enable direct

generation of control signal using Electroencephalography (EEG) signals [32] that are

analysed during different brain states including emotion recognition using speech

analysis with Wavelets [15]. BCI technology is employed in many domains including

biomedical applications, prosthesis control for instance, to help people with certain

disabilities [26]. Hands-free applications are one typical example where BCI research

became involved [32, 26, 1, 33, 8]. Other BCI research domains include industry,

education, advertising, entertainment, and smart transportation [8].

BCI research is challenging due to various reasons, such as user acceptance and

technical development. People with motor disabilities could gain the ability to express

themselves, to write down their opinions due to BCI-based projects, such as

prostheses control, spelling applications [21], semantic categorisation [34], or silent

speech communication [8].

In section 1.1, we present our contributions. A brief discussion of brain waves is

in 1.2. Electrodes and montage are presented in 1.3. EEG artefacts are discussed
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in 1.4. In section 2, we present related work and design methodology in section 3.

Discussion of results is presented in section 4. Conclusion and future work is in

section 5.

1.1 Contributions

In this work, we present our contributions, which can be summarised as follows:

1. Evaluate the performance of scalograms in CNN classifiers (with both rgb and

grayscale modes) and 1-D Wavelet classifiers in the context of optimising

prosthetic BCI control system.

2. We promote the utilisation of relatively wide bandwidth EEG input data set in order

to increase the accuracy of classification. Our designed classifier models depend

upon high-resolution EEG data set with sampling frequency of 2 kHz and relatively

high bandwidth of 500 Hz in order to optimise training and testing accuracies. The

EEG data set utilised in this work was provided by a dual-channel EEG acquisition

module from previous work [2].

3. We present comparison between 2 types of Wavelet classifiers, namely, and

various 1-D EEG classifiers, which are used to optimise the length of EEG data

and classifier model parameters. Our results have shown that the EEG data can

be shortened by 4 seconds when 1-D classifiers are utilised and by 2 seconds

when the designed scalograms CNN is utilised. This corresponds to EEG data

length of 4 seconds and 6 seconds, for 1-D classifiers and scalograms,

respectively. On the other hand, our experimentations have shown that optimal

resize parameter for the scalograms CNN classifier model was 22%. This has

significantly reduced training time and processing resources to accomplish model

training and testing.

4. Design of a compact EEG control system for prosthetic arm, which is hosted on

raspberry pi 4. All modules except for the analogue EEG acquisition modules are

hosted on raspberry pi with 8 GHz memory. The complete system is operated

through a GUI, which trains different EEG classifiers and loads trained models for

actual operation on live EEG data.
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1.2 Brain Waves

Brain waves are low-magnitude complex electro-magnetic signals that can be measured

using three methods that can be described as follows:

1. Electroencephalography (EEG), which enables recording of electrical brain

signals, as shown in figures Figure 1 [26], that are as low as 0.1 µV using dry

electrodes as shown in Figure 2 [25]. Electrodes are fixed on elastic ribbon

headset to ease recording of electrical activity of the brain along the front lobe by

measuring voltage fluctuations accompanying neuro-transmission activity within

the brain [26]. The headset is easy to wear and use, though the resulting

Signal-to-Noise Ratio (SNR) is low. Although invasive EEG produces higher

signal level compared to non-invasive EEG, invasive techniques require complex

surgery and thus are not considered in BCI systems. In this work, brain waves

were provided using a dual-channel EEG acquisition module with bandwidth of

1000 Hz [2]. Deep sleep and drowsiness detection, for instance, can be achieved

by analysing the lower frequency bands, while the higher frequencies are related

to substantial concentration and spiritual states of the brain.

2. Magneto-encephalography (MEG), which measures magnetic fields produced by

electrical currents of the brain.

3. Functional Magnetic Resonance Imaging (fMRI), which is based upon detecting

the changes in blood flow related to neural activity in the brain and provides a

high spatial resolution and captures information from deep parts of the brain that

cannot be gathered by electrical or magnetic measuring [26].

Brain waves have been categorised into five major frequency bands: δ , θ , α, β and γ,

as shown on the 10-second EEG signal in Figure 1. Studies have shown that certain

activities can be correlated with increased in power for specific frequency ranges. For

example, drowsiness and fatigue signs can be related to an increase in the θ frequency

band from 4 to 8 Hz. In this work, we have calculated features for EEG sub-bands

spanning the whole bandwidth of our design, i.e., 500 Hz, which can be described as

follows:

1. δ from 0.1 to 4 Hz divided into 2 sub-bands; δ1 (0.1-2) and δ2 (2-4) Hz.

2. θ from 4 to 8 Hz divided into 2 sub-bands; θ1 (4-6) and θ2 (6-8) Hz.

3. α from 8 to 13 Hz divided into 2 sub-bands; α1 (8-11) and α2 (11-13) Hz.
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4. β from 13 to 30 Hz divided into 3 sub-bands; β1 (13-19), β2 (19-25) and β3 (25-30)

Hz.

5. γ from 30 to 500 Hz divided into 12 sub-bands; γ1 (30-70), γ2 (70-110), γ3 (110-

150), γ4 (150-190), γ5 (190-230), γ6 (230-270), γ7 (270-310), γ8 (310-350), γ9 (350-

390), γ10 (390-430), γ11 (430-470) and γ12 (470-500) Hz.

Figure 1: Example of EEG signal showing [2] its 5 frequency bands.

1.3 EEG Electrodes and montage

Electrodes are to maintain low electrical resistance with the scalp skin during EEG

recording. Different types of electrodes are available for different applications, including

disposable and reusable types. The disposable type was not considered in this context
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due to the high number of recordings needed to generate training and validation EEG

data.

Reusable electrodes are more practical compared to wet electrodes [16] and can

be utilised with or without gel. We have opted for the silver-plated cup electrodes, as

shown in Figure 2 due to their durability and easy setup.

Our EEG acquisition system is based upon a dual-channel circuit [2] in order to

fulfil design constraints related to versatility and ease of use. By using two channels

only, the EEG acquisition module produces decent EEG signal quality that enables the

classification module to achieve high accuracy. All EEG data were acquired using dry

electrodes attached to a spongy ribbon placed on the forehead, as shown on Figure 3.

The electrodes of both channels on the frontal lobe are placed according to the 10-20

system as follows: Channel 1: Differential input signal between Fp1 and Fp2 locations.

Channel 2: Differential input signal between the left ear lobe and Fpz.

Figure 2: Silver-plated reusable EEG dry electrodes.

Figure 3: EEG headset with silver-cup electrodes fixed on elastic spongy ribbon.
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1.4 EEG Artefacts

EEG artefacts describe undesired signals of non-cerebral origin. The amplitude of

artefacts can be large relative to the size of amplitude of the cortical signals of interest.

Some EEG artefacts are useful in various applications including Electro-occulography

(EOG), which enables detecting and tracking eye-movements. EOG is important in

Poly-somnography or sleep study, where it is used to diagnose sleep disorders, and is

also used in EEG for assessing changes in alertness, drowsiness or sleep.

Power-line sources produce artefacts that can be attenuated by filtering out

undesired power-line fundamental frequency and its harmonics between 0.2 and 500

Hz. In our context, band-stop (notch) filters are applied at both analogue and DSP

modules to attenuate frequencies in a 60-Hz power system, i.e., 60, 120, 180 ... 480

Hz.

Band-pass filtering helps remove frequencies outside our intended range from 0.2

to 500 Hz. This is achieved by both the analogue acquisition module and digital filters,

at the EEG acquisition and the pre-processing modules, respectively.

Other types of artefacts can be attenuated by smoothing algorithms, which is to

remove outliers. The LowessSmoother algorithm from Python package tsmoothie was

utilised to achieve this goal.

Experimental results have confirmed that the removal of artefacts improves the

accuracy of the training and test for the different classifier models.

2 Related work

2.1 Medical applications of EEG, scalograms, deep learning and BCI

EEG and BCI are actively employed in various domains to overcome health

issues [26], including prosthetic control for upper-limb amputee [35, 23], detection of

tumour or cancer abnormal tissues [27, 28, 17], or certain brain disorders [13]. Mobile

robots constitute another BCI application to help locked-in people to perform their daily

activities [5]. BCI can be utilised to perform actions related to monitoring specific brain

states, in particular, the perceived user emotional or cognitive state [30] or stress

level [10, 31].
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2.2 Neuroergonomics and smart environment

Smart homes and transportation benefit also from BCI and EEG technology by offering

luxurious and commodity services. BCI-based is utilised in smart living environmental

and auto-adjustment control systems [9, 24, 14].

Brain signals assist also in improving workplace conditions by assessment of an

operator’s cognitive state. They also help in analysing the impact of workload mental

fatigue and task time on EEG features. Operating rooms are considered for smart

workplace BCI-based applications, where the system measures the stress level of a

surgeon and alerts according to the response type.

Intelligent transportation systems benefit also from BCI research as efficient and

robust means to avoid accidents [12]. The work in [35] proposed a solution to help

the amputee users perform precise finger movements. The problem is formulated as

a Partially Observable Markov Decision Process. The optimal control policy was found

by adaptive dynamic programming and reinforcement learning-based control algorithm-

Deep Deterministic Policy Gradient combined with Hindsight Experience Replay.

The work in [29] uses a particle filtering based technique to infer user intent based

on the trajectories of the user’s hand by generating an estimation of the expected time

left until reaching to an object, which is an essential variable in successful grasping of

objects.

The authors in [19] used myoelectric pattern recognition systems to decode

movement intention to drive upper-limb prostheses. The work is based upon

Electromyography (EMG) by combining surface Electromyography (sEMG) with inertial

measurements (IMs) and an appropriate training data collection paradigm. The results

demonstrate that this can significantly improve classification performance as compared

to conventional techniques exclusively based on sEMG signals. The work in [18] is

also based upon EMG, where myoelectric prostheses allow users to recover lost

functionality by controlling a robotic device with their remaining muscle activity.

Other research is being done on 3-D printed soft prosthetic hand control

system [23] that is able to perform all the real-world grasping tasks, showing great

potential in improving life quality of individuals with upper limb loss. In another

work [22], 13 subjects were able to effectively control reaching of a robotic arm through

modulation of their brain rhythms within the span of only a few training sessions.

The authors in [3] proposed an innovative low-cost five-fingered prosthetic hand

that aims at enabling upper limb amputees to carry out their basic daily tasks more

comfortably. A tendon-driven under actuated mechanism provides the necessary

dexterity while keeping the mechanical and control complexity of the device low. The
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prosthetic is equipped with tactile sensors to improve the overall hand control. For the

position control of each digit, a novel resistance feedback control scheme is devised

and implemented. The design applied in provides a series of improvements in terms of

size, weight and noise.

2-D and 3-D visual reshaping of EEG data are utilised as input to CNN classifiers,

which produced accuracies ranging from 97.03% and 98.4% for 3 different data sets [6].

3 Design Methodology

This section provides design details of the prosthetic control system using Wavelets,

which is shown in Figure 6.

3.1 Prosthesis with EEG control system structure

Prosthetic arm control faces usability challenges to have an efficient data acquisition,

perform training session for volunteers and to conduct acquisition at various occasions

and conditions on order to a provide coherent test results. Technical challenges include

non-linearity, noise and non-stationary patterns of the brain signals. The block diagram

of the designed BCI prosthetic control system (as shown on Figure 4 composed of

several analogue and digital modules, which are described as follows [26]:

1. Analogue EEG signal acquisition. In invasive EEG acquisition, electrodes are

implanted inside human body. Although this produces better SNR, it offers less

flexibility and adds substantial complexity. Consequently, this method has very

limited practical applications. Hence, non-invasive EEG acquisition is adopted in

this work using dry electrodes that are attached to the frontal lobe using an elastic

ribbon headset. This method offers more flexibility and requires signal conditioning

and pre-processing to increase SNR.

2. Analogue signal conditioning and pre-processing. This module includes

pre-amplification to increase SNR as well as analogue band-pass and notch

filtering.

3. Digital Signal Processing (DSP). Analogue sensors capture various signal types,

such as sound, light, temperature or pressure and prepare them for DSP modules.

Analogue-to-Digital Converters (ADC) convert analogue signal into binary form

ready for DSP, which sends back the processed signals to Digital-to-Analogue

Converters (DAC), to their original form. Typical DSP modules suffer from high
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power consumption, which can be overcome by the utilisation of FPGA modules.

Many of the DSP modules are implemented efficiently with FPGA kits. Although

FPGAs offer better performance than dedicated DSP kits, still FPGAs need a

preliminary knowledge in Hardware Description Languages (HDL). In this work,

DSP has to do with analysing and modifying digitised brain signals to achieve

certain processing objectives such as filtering, artefact removal and smoothing. In

this work, DSP employs various mathematical and computational algorithms on

digital EEG signals to produce high-quality 1-D time series. DSP is also used to

generate spectrograms and scalograms, i.e., 2-D representations of EEG signals,

as shown on Figure 5.

4. Feature extraction. Relevant features include statistical calculations, 1-D Wavelet

transforms and scalograms, which are 2-D representations of EEG signals using

Wavelet transform [4], as shown in Figure 5. Wavelet features describe adequately

EEG signals in time and frequency domains. The default Wavelet types utilised in

this work include the Morlet (for scalograms) and Debauchies (for 1-D features).

An example of scalograms is shown in Figure 5.

5. Classification. A classifier has the ability to distinguish new features after being

trained using machine learning techniques, which include LDA, Quadrature

Discriminant Analysis (QDA), Naı̈ve Bayesian (NB), MLP and CNN. LDA

projection is also used to reduce the number of relevant features in order to

reduce processing and learning times.

6. Control module. The resulting classification output is fed into the control module

in order to generate commands to the prosthetic hand, for instance.

The above first and second modules are deployed on dedicated EEG module board,

while the other digital modules are deployed on raspberry pi 4, which is a single-board

computer equipped with 8 GB memory, Ethernet, HDMI, USB and GPIO ports.

Two additional laptop computers have been utilised to perform multiple training

sessions with different parameters to investigate optimal training models.

The hardware involved in the designed prosthetic arm control system is described

as follows:

1. Headset with silver-cup dry electrodes, which maintain good electrical contact with

the frontal lobe. The headset is composed of elastic ribbon and spongy piece to

ensure easy and fast setup. The headset that we utilised is composed of two pairs

of electrodes as shown on Figure 3.

Page | 10



Multi-Knowledge Electronic Comprehensive Journal For

Education And Science Publications (MECSJ)

Issue (50) 2022

ISSN: 2616-9185

www.mecsj.com

EEG data setEEG data set

Live EEG
Digital  signal

Live EEG
Digital  signalTraining ?Training ?

Pre-processingPre-processing

Feature extractionFeature extraction

Training/validationTraining/validation
Control moduleControl module

          Yes

Save trained classifierSave trained classifier

Training done?Training done?

         Yes

Load saved classifierLoad saved classifier

No

Pre-processingPre-processing

No

GPIO

EEG 
acquisition

GPIO

Figure 4: Block diagram of the BCI prosthetic arm control.

2. Analogue EEG acquisition. In this work, we utilised a dual-channel EEG

acquisition circuit [2] that has analogue pre-filtering stage of 171-Hz, which is

adequate for attenuating noise levels and prepare the EEG signal for subsequent

digital filtering in the following DSP stage. The EEG acquisition module is

connected with the EEG headset, the electronic explorer kit and the raspberry

pi 4 through the GPIO pins. It captures, amplifies and filters brain signals that are

converted into digital form using ADC during live capturing of EEG signals that

are fed into the trained classifier. During recording sessions for training and

Figure 5: Scalograms of an EEG signal.

Page | 11



Multi-Knowledge Electronic Comprehensive Journal For

Education And Science Publications (MECSJ)

Issue (50) 2022

ISSN: 2616-9185

www.mecsj.com

testing data set, the EEG signal is fed into the Electronics Explorer board, which

records 8 seconds of brain activity at a sampling frequency of 2 kHz.

3. Single-board computer (raspberry pi 4), which hosts the DSP, feature extraction,

classification and control modules. The raspberry pi 4 include the feature

extraction and classifier modules, which take digital input from the analogue EEG

acquisition board and from the locally stored EEG data set. The control module

is also hosted in the raspberry pi 4, which sends Pulse-Width Modulation (PWM)

control signals to perform desired grip and wrist functions.

4. Electronics explorer board [11], which is a complete test bench equipped with

several test modules including digital oscilloscope, function generator, DC source

and multi-meter. This board was used to construct the EEG data set collected from

recorded sessions at different sampling frequencies. The Electronics Explorer

board is a useful measuring development kit that is also possible to be controlled

and programmed by Python.

5. Prosthetic arm, which includes mechanical gears and embedded DC servomotors

that take PWM control signals from the GPIO port of the raspberry pi 4 in order to

generate the movements of the arm.

Figure 6: General overview of the prosthetic BCI control system.

3.2 DSP module using Python

We have utilised Python code to perform DSP that can be described as follows:

• filter unwanted power line noise including harmonics (60, 120, ..., 420, 480 Hz).
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• filter out signals outside EEG signals of interest within 0.2 and 500 Hz by using

BPF, Finite Impulse Response Filter (FIR). The 500 Hz was chosen as a good

compromise between accuracy and processing resources of the raspberry pi 4.

• generate EEG 1-D features by using statistical calculations as well as Wavelet

transform.

• reduce the number of relevant statistical features using LDA in order to reduce

processing time and memory.

• generate 2-D image representations of 1-D EEG signals using Wavelet

scalograms, which are the input for the CNN classifier.

The main Graphical User Interface (GUI) of the EEG control system is shown in

Figure 7, which is utilised to train the model and select the machine learning settings.

Once training is done, the trained model is saved for the testing phase and for realistic

operation of the prosthetic arm. The interface also accepts manual input off-line

samples to be classified according to the trained model. Similarly, the live mode button

allows direct EEG acquisition for actual operation by the user.

Figure 7: Main GUI of the prosthetic control modules.

3.3 EEG data set

Using the EEG acquisition module and the electronics explorer board, we have

constructed a considerable data set with the participation of 7 male volunteers whose

ages lie within 22 and 47 years. During recording sessions, each participant was
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Table 1: Class labels for the EEG data set.

Class Labels Samples

1 Imagine moving right arm 48

2 Imagine grabbing an object with one hand 49

3 Using Whats-app application 44

4 Engage in a mobile telephone conversation 43

asked to perform 4 different physical gestures and mental exercise, two of which are

pure brain activity (thinking or imagination) and the other two are mixed activities (brain

and muscle) interaction. All of the 4 brain activities (classes) are described in table 1.

EEG data collection lasted for more than one year. All recordings were labelled with

relevant information including the state of the participant (normal or drowsy), gesture

description, participant name and serial number. The EEG data set includes more than

1000 recordings of 8-second durations. In this work we concentrate on a subset of our

EEG data set that includes 184 recordings distributed over 4 classes. The presence

of two channels for EEG data acquisition and the wide bandwidth of our EEG data

(sampled at 2 kHz) has resulted in high training and testing accuracies, which eliminated

the need for data augmentation [7].

3.4 Prosthetic arm

The prosthetic arm shown on Figure 6 was built using 3-D open-source printed [20]. The

prosthetic arm can simulate different wrist and hand movements using 6 servomotors;

5 for the fingers and one for the wrist. The motors are connected to an external 5 V DC

power source. The control module hosted on the raspberry pi 4 generates the PWM

control signals related to each detected class.

4 Machine-learning results

Wavelet transform characterises EEG signals in terms of time and in frequency,

therefore Wavelet features are calculated for 1-D EEG time series as well as 2-D

scalograms (images). We have successfully integrated different types of feature

classification models, such as LDA, QDA, NB, MLP and CNN, which can be selected

for training using the GUI shown in Figure 7. The GUI also enables trimming the total

recording period (8 seconds) as well as selecting various parameters for the

scalograms including the colour mode (grayscale or rgb), the size of scalograms,
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Wavelet type and resampling frequency for the generation of scalograms. In rgb colour

mode, scalograms use 8 bits per colour encoded from 0 to 255. Our experiments have

shown that although CNN classifier with grayscale scalograms were faster in training,

they were inferior in training accuracy compared to rgb mode, therefore we opted for

the colour mode in subsequent experimentation.

Depending on the selected parameters, the training of deep learning classifiers, in

particular, CNN with scalograms may be accomplished after 2-24 hours. Therefore, we

performed experiments to study the effect of trimming the input EEG data and resizing

the 2-D scalograms. The performances of 4 1-D Wavelet classifiers are shown in

Figure 8 for NB, MLP (with sklearn Python library), LDA and keras-MLP classifiers.

The testing curve for QDA is inferior to other classifier models.

The scalograms CNN performance varies with respect to trimming (between 0 and

7 seconds) the EEG data as shown in Figure 8. We assume that best performance is

obtained when average training and validation (test) curves intersect (equal at a

certain trimming point) or at least so close to each other. The MLP model (using

sklearn library) and NB classifiers performed best compared to the others at trim of 4

seconds (corresponds to EEG data length of 4 seconds), where the training and

validation curves are equal for LDA with accuracy of 97.0%. With trim of 1 second, the

performance of LDA is best since the under fitting represented by the difference

between training and validation curves is minimum, i.e., 1.39%. The performance of

keras-MLP is best at trim of 7 (with training accuracy of 97.6%). The best classifier for

our data set is MLP (as shown in Table 2), while the QDA got the lowest score since it

has shown highest difference between training and validation curves.

The GUI shown in Figure 7 shows a maximum scalograms (image) size of 1500×300

pixels, which can be optimised to increase accuracy and reduce training time. The

performance of the Wavelet scalograms classifier where CNN varies with respect to the

resize value (from 18% up to 70%, as is shown in Figure 9. The trim period between

18% and 70% was chosen with respect to the processing resources and time for the

raspberry pi 4 and to correctly fit into the designed deep CNN learning model. The

performance of the scalograms CNN classifier is best with trimming of 2 (EGG data size

of 6 seconds) and resize of 22%, which corresponds to image size 330×66 pixels (rgb

mode). The training duration of CNN with scalograms is greater than 24 hours when

the scale of scalograms is around 70% without trimming the raw EEG data. The optimal

trimming value of 2 is inferred from Figure 10 for both rgb and grayscale modes. We

conclude that the performance of CNN with scalograms degrades when the trimming

and scalograms sizes are increased, which is typical for deep learning algorithms that
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Table 2: Performance scores for 1-D and scalograms classifiers.

Classifier
Trim

Average accuracy

%
Resize Performance

(s) Train Test % score

QDA 7 97 86 - ������ (least)

NB 4 94 93 - ������

MLP (sKlearn) 4 95 95 - ������ (best)

LDA 4 95 98 - ������

Keras-MLP 7 98 88 - ������

Scalograms CNN 2 98 100 22 ������

necessitate great number of EEG data. A summary of performance results is shown in

Table 2.

Figure 8: 1-D Wavelet classifiers average accuracies vs. trim (EEG data length).

Deep learning models, such as MLP and scalograms CNN produce high training and

testing accuracies, they require careful tuning, considerable number of training epochs

and processing resources. Therefore, LDA and NB for instance become handy to test

the EEG data set for convergence and fast predictions.

Once trained and saved, desired machine learning models can be selected through

the GUI in order to be used for classification of new EEG input during normal operation

of the prostheses.

5 Conclusion

Prosthetic control using Wavelet EEG features is an essential field of scientific

research that brought enormous benefits to health, economy, industry and community.
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Figure 9: Effect of resizing scalograms in Wavelet classifiers.

Figure 10: Trim effect on scalograms CNN (resized at 22%).

Electroencephalogram (EEG) is a technology that records the electrical signal activity

of the brain, which varies with physical activity and thinking. Wavelets features and

EEG are the basis of many BCI applications, where electrical brain waves are

captured, filtered, converted to digital form and classified using various

machine-learning algorithms.

In this work, we evaluated the performance of four 1-D and 1 scalograms Wavelet

EEG classifiers for optimal prosthetic control that is beneficial for individuals suffering

from severe motor disabilities, where control of prosthetic arm may be achieved by brain

signals.

The designed optimised prosthetic arm control system is based upon a dual-channel

EEG acquisition module and several machine learning algorithms including NB, MLP,

LDA and scalograms CNN. We have provided thorough comparison between 1-D and

scalograms in terms of performance parameters relevant to EEG input duration and

size of scalograms. The training is based upon local EEG data set, which contains

184 classes recorded for 7 subjects. The complete system is compact and hosted in a
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raspberry pi 4 with sufficient processing power including 8 GB memory, which is enough

to perform DSP, training and PWM control necessary to control the servomotors inside

the prosthetic arm.

The results of performance evaluation indicate that 1-D EEG Wavelet classifiers are

more advantageous compared to scalograms in terms of optimal length of EEG data

(higher trimming), i.e., EEG length could be reduced to 4 seconds instead of full 8

seconds of the original raw EEG data. On the other hand, scalograms CNN classifier

and produced highest training accuracy of 99% when trimming was 2 seconds.

The advantages of the designed system include compact design, moderate-training

times, wide bandwidth covering frequencies from 0.2 up to 500 Hz, flexible scalograms

resize parameter that can be selected prior to training, dual channel EEG acquisition

with 2 kHz sampling frequency, simplicity, compactness and low cost.

The future work relevant to this work include fine tuning of the deep learning

classifier models to improve EEG pre-processing, training time, responsiveness of the

prosthetic control system and decrease over fitting through investigating different

Wavelet functions.
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