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Abstract 

       In this research, regression and smoothing spline approximations are used and compared for 

estimating the conditional mean function. Major attention is directed towards shape constrained 

estimation. In many applications monotonicity is an integrated part of the regression functions 𝑔(·)  

being fitted. Monotonicity is obtained here free of charge in the sense that the constrained fits 

inherit the asymptotic properties of the unconstrained estimates. The main tool is the use of 

quadratic 𝐵-splines. Some simulation experiments have been undertaken to evaluate finite-sample 

performance of the presented monotone ‘regression’ and ‘smoothing’ spline estimators 𝑔̂𝑟
∗ and 𝑔̂𝑠

∗. 

The monotone estimator 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗  obtained by applying the modern rearrangement technique is used 

as a benchmark in various constrained (linear monotone, monotone concave and only monotone) 

scenarios, for different sample sizes. The resulting Mean Squared Error estimates indicate that 

𝑔̂𝑟𝑒𝑎𝑟𝑟
∗  is the winner only when the true regression function is linear monotone. The smoothing 

spline 𝑔̂𝑠
∗ is superior in the other scenarios when it comes to estimate the regression mean. Practical 

guidelines to effect the necessary computations and comparisons of the different estimators are 

provided by making use of the R software. 

Keywords: Monotonicity, 𝐵-splines Approximations, Regression Spline Estimator, Smoothing 

Spline Estimator, Rearrangement Estimator. 

 



Multi-Knowledge Electronic Comprehensive Journal for Education and Science Publications (MECSJ) 

ISSUE (35), August (2020) 

ISSN: 2616-9185 

 

2 
 

 

 الملخص

اقتران المتوسط الشرطي.   لتقريبوذلك     regression and smoothing splineتم استخدام ومقارنة تقريبات    في هذا البحث,

جزءًا لا يتجزأ من    Monotonicity. في العديد من التطبيقات، تعتبر  (المشروطالمقيد)نحو تقدير الشكل  يتمثل  الاهتمام الرئيسي  

هنا مجانًا بمعنى أن القيم المقيدة ترث الخصائص المقاربة للتقديرات   Monotonicityيتم الحصول على  .    (·)𝑔  الانحدار  دالة 

استخدا الرئيسية هي  الأداة  المقيدة.  أداء عينة منتهية .التربيعية   B-splineدالة  مغير  لتقييم  المحاكاة  إجراء بعض تجارب   تم 

monotone ‘regression’ and ‘smoothing’ spline estimators 𝑔̂𝑟  للتقريبات
∗ and 𝑔̂𝑠

تقريب   على  تم الحصول .  ∗

𝑔̂𝑟𝑒𝑎𝑟𝑟
 monotone  )خطي  مشروطة كمعيار في سيناريوهات مختلفة  بواسطة تطبيق تقنية إعادة الترتيب الحديثة وتم استخدامها    ∗

مقعر  ،  monotone    وmonotone  .مختلفة عينات  أن  الناتج    Mean Squared Error  تقريب   فقط(، لأحجام  الى  يشير 

𝑔̂𝑟𝑒𝑎𝑟𝑟
الانحدار    الأفضل   هو ∗ دالة  تكون  عندما  monotone  .𝑔̂𝑠خطي    𝑔(𝑥)الأصلية  فقط 

أفضل   ∗ بشكل  في    يتصرف 

الأمر   يتعلق  عندما  الأخرى  الحسابات   تمالانحدار.  متوسط  دالة    بتقريبالسيناريوهات  على  للتأثير  عملية  إرشادات  توفير 

 . Rالإحصاء المختلفة من خلال استخدام برنامج للتقريباتوالمقارنات اللازمة 

𝐵, تقريبات    Monotonicity:  الكلمات المفتاحية − spline    تقريب ,Regression Spline    تقريب ,Smoothing Spline  

 , تقريب إعادة الترتيب. 

 

1.   Introduction 

      Nonparametric regression analysis is an increasingly popular tool for the purpose of data 

smoothing including kernel estimators (Gasser and Muller (1979)), smoothing spline estimators 

(Eubank (1988)), regression spline estimators (Friedman and Silverman (1989)) and 𝐵-spline 

estimators (He and Shi (1994)). We refer to the books of Wahba (1990) for an overview on the 

topic of spline models in traditional regression analysis, and to the books of de Boor (2001) and 

Schumaker (2007) for a modern treatment of splines. 

      A basic problem in many areas of statistics is the estimation of an unknown target function 

𝑔(𝑥). In this paper we focus on the problem of estimating the conditional mean function using 

regression and smoothing 𝐵-spline approximations of different orders in the unconstrained case 

and under the monotonicity constraint.  
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The conditional mean function describes how the mean of a response variable 𝑌 changes with a 

vector of covariates 𝑋 and minimizes a sum of least-square errors. In many applications, 

monotonicity is an integrated part of the function being fitted. For example, growth curves (e.g., 

weight or height of growing objects over time) are known to be increasing. Typical examples in 

economics include the evolution of outputs (𝑌) versus the stock of capital (𝑋) at the country level, 

expenditures (𝑌) versus incomes (𝑋) at the household level (Lee et al. (2009)). Other practical 

applications appear in medical sciences where the probability of contracting a certain disease (say 

cancer) depends monotonically on certain factors (say smoking frequency, drinking frequency and 

weight) (Dette and Scheder (2006)). Such examples are abundant in economics, environment, 

medical sciences and other areas (see, e.g., Ramsay (1988)). 

     The motivation of using splines in this work lies in their unmatched flexibility and adaptivity 

as well as their great approximation power. Splines are constructed as piecewise polynomials with 

specified continuity constraints. These continuity characteristics and the number of parameters 

defining a spline function depend on a knot mesh at which the polynomial pieces are connected. 

The main challenge when optimizing splines is determining the number and the locations of the 

knots. This requires a good initial guess of the knot locations (Ruppert (2002)). Once the sequence 

of knots is given, the splines can easily be computed for any desired order. There are three general 

approaches to spline fitting: regression splines, smoothing splines and penalized splines. The 

fundamental difference between the regression and smoothing splines is that smoothing splines 

explicitly penalize roughness and use the data points themselves as potential knots whereas 

regression splines place knots at equidistant or equiquantile points. A special class of splines, 

called 𝐵-splines, is a generalization of the Bezier curve (Racine). 𝐵-spline estimates are defined 

as the scalar product of their normalized basis functions [having order (𝑝 + 1) and number of inter-

knots segments𝑘𝑛] and the coefficients of these basis functions which are obtained by solving a 

programming problem (de Boor (2001)). 

     The monotonization method we propose is inspired from He and She (1998). It is based on the 

use of quadratic 𝐵-splines on a selected set of knots.  
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Monotone regression and smoothing splines can be obtained by adding simple linear constrains to 

the program already in use for calculating the unconstrained estimator. Cubic and higher-order 

splines are more appealing for smoothness, but monotonicity can no longer be characterized as 

linear constraints at the knots. For our purpose of estimating the regression mean curve, we will 

compare the presented monotone quadratic 𝐵-spline fits with a monotonic estimate obtained by 

applying the promising rearrangement technique initiated by Dette, Neumeyer and Pilz (2006) and 

popularized by Chernozhukov, Fernandez-Val and Galichon (2009). This benchmark estimator is 

obtained via a rearrangement transformation of the original unrestricted estimate, say 𝑔̂(𝑥) of the 

target function 𝑔(𝑥) to a monotonic estimate 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ . The increasing rearrangement operator 

simply transforms a function 𝑔 to the quantile function 𝑔∗ of the random variable 𝑔(𝑈)when 

𝑈∼𝒰(0,1). The rearranged estimator 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗  has the advantage over the original estimator to be 

monotone whenever the latter is not monotonic, but also to have a smaller estimation error in the 

𝐿𝑝 norm. 

      A huge amount of research has been carried out in the past few decades on nonparametric 

estimation of the conditional mean function based on the idea of regression and smoothing splines. 

More recent references on the topic of smoothing splines include Wahba (1990), Hardle (1990), 

Hastie and Tibshirani (1990), Green and Silverman (1994) and Eubank (1999). The choice of the 

smoothing parameter in connection with the averaged mean squared error was initiated in a series 

of early papers, including Wahba and Wold (1975) and Craven and Wahba (1978).  

      A number of authors have come up with different solutions to the problem of estimating 

regression curves using regression spline techniques including Stone (1985), Stone (1994), and 

Huang (2003). More recent attempts of using monotonized spline smoothers can be found in the 

context of mean regression problems including Lu et al. (2007), Meyer (2008), Wang and Yang 

(2009) and Pya and Wood (2015). Early works combining smoothness with multiple shape 

restrictions in the regression setting include, for instance, Wright and Wegman (1980) and Ramsay 

(1988).  
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Restricted spline smoothing has also been studied by Mammen (1991) and Mammen and Thomas-

Agnan (1999), Pal and Woodroofe (2007) with minimizing a penalized least squares criterion 

incorporating monotonicity constraints. Finally, Chernozhukov, Fernandez-Val and Galichon 

(2009) proposed point and interval estimators of monotone functions using the rearrangement 

method, first initiated by Dette, Neumeyer and Pilz (2006). 

     To evaluate finite-sample performance of the presented monotone ‘regression’ and ‘smoothing’ 

spline estimators 𝑔̂𝑟
∗ and 𝑔̂𝑠

∗, we have undertaken some simulation experiments. The experiments 

employ three constrained scenarios: linear monotonicity, monotone concavity and single 

monotonicity. We compare the accuracy of these spline smoothers relative to the ‘rearranged’ 

estimator 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗  by computing Monte Carlo estimates of their bias and mean-squared error for 

different sample sizes. The choice of smoothing parameters for regularizing both estimated 

quadratic spline functions is a major issue in practice, but the monotonicity constraint makes this 

selection easier than the unconstrained smoothing problem: it reduces sharp changes in the slope 

and curvature of the estimated regression functions. Considering a set of knots equally spaced in 

percentile ranks, an adequate number 𝑘 of inter-knot segments in the ‘regression’ spline can be 

determined by analogy to the popular Akaike information criterion (AIC). In what concerns the 

‘smoothing’ spline estimator, we implement a Schwarz information criterion (SIC) to select the 

optimal smoothing parameter 𝜆. 

2.   Estimating the Conditional Mean 

As the main purpose of this study is to use 𝐵-spline approximations for estimating conditional 

mean function, we shall first give the general definition of a polynomial spline. 

Definition 

Denote a partition of an interval [𝑎, 𝑏] by 𝑎 = 𝑡0 < 𝑡1 <. . . 𝑡𝑘𝑛
= 𝑏. For an integer 𝑝 ≥ 0, a 

polynomial spline of order (𝑝 + 1) with simple knots 𝑡1, . . . , 𝑡𝑘𝑛−1 is any function 𝑠(·) from [𝑎, 𝑏]  

to ℝ such that  
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• 𝑠(·) is continuously differentiable until order (𝑝 + 1) [if 𝑝 ≥ 1],  

• The restriction of 𝑠(·) to inter-knot intervals (𝑎, 𝑡1], . . . , (𝑡𝑖, 𝑡𝑖+1], . . . , (𝑡𝑘𝑛−1, 𝑏], coincides  

 with a polynomial of degree less than or equal to 𝑝. 

     In this research we focus on estimating the regression mean function using both regression and 

smoothing 𝐵-spline approximations under the unconstrained and the monotonicity constraint 

based on the least-squares principle. We restrict ourselves to the interval [𝑎, 𝑏]  ≡ [0, 1]. 

The Problem 

Suppose that 𝑛 pairs of observations {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛}, with 𝑎 = 𝑥0 < 𝑥1 <. . . < 𝑥𝑛 <

𝑥𝑛+1 = 1, are available to estimate the mean function 

                                              𝑔(𝑥) = arg minθ∈ℝ 𝔼[(𝑌 − 𝜃)2|𝑋 = 𝑥]                                        (1) 

We consider the following regression model: 

                                               𝑦𝑖 = 𝑔(𝑥𝑖) + 𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑛,                                                           (2) 

where the regression errors 𝑢𝑖 represent a random noise with mean 0 given the covariate 𝑥𝑖. 

We assume that the function 𝑔 has a uniformly continuous and bounded second order derivatives. 

It is then well known that the functions 𝑔 and 𝑔/ can be uniformly approximated by quadratic 𝐵-

splines and their derivatives. Here we restrict ourselves to 𝑥 ∈[0,1]. 

      Let 0 = 𝑡0 < 𝑡1 <. . . 𝑡𝑘𝑛
= 1 be a partition of [0, 1], and let 𝑁 = 𝑘𝑛 + 𝑝, where 𝑘𝑛 represents 

the number of inter-knot segments and (𝑝 + 1) defines the order of the spline approximation. We 

will denote by 𝑆𝑃,𝑇 the space of polynomial splines of order (𝑝 + 1) with knot mesh (𝑡𝑖)𝑖=0
𝑘𝑛 .  

      Let 𝜋(𝑥) = (𝜋1(𝑥), . . . , 𝜋𝑁(𝑥))𝑇, with 𝜋𝑗(𝑥) being the normalized 𝐵-spline basis functions. 

The motivation here is to estimate the conditional mean using regression and smoothing 𝐵-spline 

approximations. 
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2.1.   Regression Spline Estimators 

2.1.1. Unconstrained spline smoothers 

According to the regression model (2), a regression 𝐵-spline estimate 𝑔̂𝑟 ∈ 𝑆𝑃,𝑇 of the conditional 

mean 𝑔(𝑥) can be defined as  

                                                          𝑔̂𝑟 = 𝜋(𝑥)𝑇𝛼̂𝑟,                                                                                  (3) 

where 𝛼̂𝑟 can be formulated as follows 

                                                                𝛼̂𝑟 = arg 𝑚𝑖𝑛𝜃∈ℝ𝑁 ∑(𝑦𝑖 − 𝜋(𝑥𝑖)𝑇𝛼)2

𝑛

𝑖=1

.                                (4) 

The least-squares minimization problem (4) represents a special subclasses of convex optimization 

problems without constraints. Write 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑁, and define the basis matrix          

𝜋 ∈ ℝ𝑛×𝑁 by 

                                                               𝜋𝑖,𝑗 = 𝜋𝑗(𝑥𝑖), 𝑖 = 1, , . . . , 𝑛, 𝑗 = 1, . . . , 𝑁                                           

(i.e. 𝑗th column of 𝜋 gives the evaluations of 𝜋𝑗 over the points 𝑥1, . . . , 𝑥𝑛). Then, according to 

Boyd and Vandenberghe (2004), the analytical solution of this minimization problem is given by 

                                                       𝛼̂ = (𝜋𝑇𝜋)−1𝜋𝑇𝑦                                                                           (5) 

       There are good algorithms and software implementations for solving least-squares problem to 

high accuracy, with very high reliability. Least-squares problems are used widely in statistical 

applications such as interpolation, extrapolation and smoothing of data, and also they used in 

statistical interpretations, for example in the R package ”crs” in order to build the 𝐵-spline 

estimator of the regression mean function. 

The selection of knots  

For the selection of the initial knots 𝑇 = (𝑡𝑖)𝑖=0
𝑘𝑛 , we can perform “crs” function through “crs” 

package using the options ”uniform” or ”quantile”, but for choosing the optimal number of knots  
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we use 𝐴𝐼𝐶 criteria based on least-squares deviation which is defined as follows 

𝐴𝐼𝐶(𝑇) = log [ 
1

𝑛
∑(𝑦𝑖 − 𝑔̂𝑟(𝑥𝑖))2

𝑛

𝑖=1

] + 2(𝑘𝑛 + 𝑝) 𝑛⁄  ,              (6) 

where 𝑘𝑛 and 𝑝 are defined previously. 

       The unconstrained regression 𝐵-spline estimate of the conditional mean can be implemented 

easily using crs function through crs package (Racine, J., Nie, Z. and Ripley, B. D. (2015)) in R 

software. The coefficients 𝛼̂𝑟 of 𝐵-spline basis functions estimate can also be estimated though crs 

function. The number of knots can be calculated through crs function using the option ’segments’, 

where the number of segments is equal to the number of knots -1. The knots can be generated 

using (default knots  = 0 quantiles 0) specifying where knots are to be placed. Quantiles specifies 

knots placed at equally spaced quantiles and knots  = 0 quantiles 0 specifies knots placed at equally 

spaced intervals, we can also use the option degree for specifying the polynomial degree of the 𝐵-

spline basis for each dimension of the continuous viable 𝑥 (default degree = 3, i.e. cubic spline). 

Finally, we perform 𝐴𝐼𝐶 criterion for selecting the optimal number of knots by computing the 

regression 𝐵-spline estimators for 𝑁 = 0,…,nknots, and then select 𝑁 that corresponds to the 

smallest 𝐴𝐼𝐶. 

      The quadratic regression 𝐵-spline estimator is a good tool for estimating the unknown 

regression curves, but of course higher-order splines are often more appealing for smoothness. 

This section carry out comparison between quadratic and cubic regression 𝐵-spline estimators of 

the mean function. 

2.1.2. Constrained quadratic spline smoothers 

      With the monotonicity constraint in mind, the isotonization methods that have been proposed 

and studied in the literature by most authors tend to be either much more computationally 

expensive or less flexible for modeling or harder to analyze mathematically. We propose in this 

section a simple but effective monotone smoothing method based on constrained least-squares 

deviation principle. More specifically, we focus on quadratic constrained 𝐵-spline estimation. 
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A quadratic monotone regression 𝐵-spline estimate 𝑔̂𝑟
∗ ∈ 𝑆𝑃,𝑇 of the conditional mean 𝑔(𝑥) can be 

defined as  

                                                              𝑔̂𝑟
∗ = 𝜋(𝑥)𝑇𝛼̂𝑟

∗,                                                                              (7) 

where 𝛼̂𝑟
∗ can be formulated as follows 

𝛼̂𝑟
∗ = arg 𝑚𝑖𝑛𝜃∈ℝ𝑁 ∑(𝑦𝑖 − 𝜋(𝑥𝑖)

𝑇𝛼)2

𝑛

𝑖=1

.                          (8) 

 Subject to  

                                                             (𝜋/(𝑡𝑗))𝑇𝛼 ≥ 0 , 𝑗 = 0,1, . . ., 𝑘𝑛 ,                                         (9) 

For the computation of the coefficients 𝛼̂𝑟
∗ and the estimator itself, first we create the basis functions 

of order 2 of the 𝐵-spline using 6 knots via the quantile method. Afterwards, we used the 

constrained least-squares algorithm with (𝑘𝑛 + 1) linear constraints for solving the quadratic 

minimization problem. The resulting solution gives us a vector including the coefficients of the 

basis functions of the 𝐵-spline, and then we make scalar product between the coefficients and the 

basis functions in order to get the quadratic monotone 𝐵-spline curve. The implementation of this 

estimator was already done by Jeffrey S. Racine. 

2.2.   Smoothing Spline Estimators 

In this section, we use the smoothing spline technique for estimating the conditional mean which 

is based on the least-squares principle. 

2.2.1. Unconstrained spline smoothers 

Using the regression model (2), the smoothing 𝐵-spline estimate 𝑔̂𝑠(𝑥) of the conditional mean 

𝑔(𝑥) can be defined as 

                                                    𝑔̂𝑠(𝑥) = 𝜋(𝑥)𝑇𝛼̂𝑠,                                                                              (10) 

where  
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𝛼̂𝑠 = arg 𝑚𝑖𝑛𝜃∈ℝ𝑁 ∑(𝑦𝑖 − 𝜋(𝑥𝑖)
𝑇𝛼)2 + 𝜆 ∫[𝜋/(𝑡)𝑇𝛼]

2
𝑑𝑡

1

0

𝑛

𝑖=1

      (11) 

 Subject to the monotonicity constraints 

                                                  (𝜋/(𝑡𝑗))𝑇𝛼 ≥ 0 , 𝑗 = 0,1, . . ., 𝑘𝑛 ,                                                   (12) 

     The first term of (11) captures the fit to the data and the second one penalizes the curvature. 

The penalty constant 𝜆 > 0 plays the role of the smoothing parameter which controls the tradeoff 

between the two terms. A λ that is too close to zero will yield an estimate that interpolates the data, 

and a λ that is too big will produce an estimate practically equivalent to the linear regression 

estimate of the data. 

       For the computation of the coefficients 𝛼̂𝑠, we used the code that was implemented by Mary 

C. Meyer which is based on least-squares algorithm. In this code, the ”coneproj” package has been 

employed in R software with the function ”penspl” which takes the arguments, (1 for monotone 

increasing and 2 for monotone decreasing), 𝑥, 𝑦, 𝑘 (the number of knots chosen by ”uniform” 

method), 𝑞 (degree of the penalty) and (λ > 0). 

Smoothing parameter selection 

      In all smoothing techniques, a critical problem is the selection of the smoothing parameter λ. 

When using smoothing splines one does not need to choose the location of knots, since the knots 

are chosen to be typically the design points or the number of knots is too large, and the smoothness 

of the estimate is controlled only via the smoothness parameter. 

In the literature, there are several methods for choosing λ including Schwarz-type information 

criterion (𝑆𝐼𝐶) used in Koenker et al. (1994), and He, Ng and Portnoy (1998), Cross validation 

(𝐶𝑉) and generalized cross-validation (𝐺𝐶𝑉 ) (Wahba (1985)). Here we will restrict our attention 

to (𝑆𝐼𝐶) criterion that is defined as follows 

𝑆𝐼𝐶(𝜆 ) = log [ 
1

𝑛
∑(𝑦𝑖 − 𝑔̂𝜆(𝑥𝑖))2

𝑛

𝑖=1

] +
1

2
𝑝𝜆𝑙𝑜𝑔(𝑛) 𝑛⁄  ,         (13) 
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where 𝑔̂𝜆 is the smoothing spline estimator 𝑔̂𝑠 that corresponds to the specified smoothing 

parameter 𝜆  and 𝑝𝜆 is the number of interpolated data points that serves as a dimensionality 

measure of the fitted model.  

It is important to note that the first term of 𝑆𝐼𝐶 becomes infinitely small if 𝑔̂𝜆 interpolates every 

single data point. As a result, the 𝜆 that minimizes 𝑆𝐼𝐶 could be too small for unconstrained fits. 

2.2.2. Constrained quadratic spline smoothers 

      When taking into account the monotonicity constraint, then the quadratic smoothing 𝐵-spline 

estimate of the conditional mean can be defined as 

                                                     𝑔̂𝑠
∗(𝑥) = 𝜋(𝑥)𝑇𝛼̂𝑠

∗,                                                                                 (14) 

where  

𝛼̂𝑠
∗ = arg 𝑚𝑖𝑛𝜃∈ℝ𝑁 ∑(𝑦𝑖 − 𝜋(𝑥𝑖)

𝑇𝛼)2 + 𝜆 ∫[𝜋/(𝑡)𝑇𝛼]
2

𝑑𝑡

1

0

𝑛

𝑖=1

.       (15) 

Subject to the monotonicity constraints 

                                                  (𝜋/(𝑡𝑗))𝑇𝛼 ≥ 0 , 𝑗 = 0,1, . . ., 𝑘𝑛 ,                                                   (16) 

For the calculation of 𝑔̂𝑠
∗(𝑥) estimator, we use the function penspl with the same arguments as in 

the unconstrained case and with the constrained fit (cfit). 

3.  Results and Discussion   

The following examples will be studied with two real datasets in order to understand the 

monotonicity and non-monotonicity of 𝐵-spline smoothing estimators of the conditional mean 

function. 

Example 1: This data example serves to illustrate the case where the regression 𝐵-spline estimate 

doesn’t enjoy the monotonicity property even if 𝑔(·) does. We use the dataset ”iris” in the R 
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 package MASS, this dataset contains 150 pairs of observations of the measurements in centimeters 

of the variables, Sepal Length (𝑥) and Petal Length (𝑦). We use the regression 𝐵-spline of orders 

2 and 3 to estimate the conditional mean function as appears in figure 1. 

 

Figure 1: Scatter plot of the iris data, along with unconstrained quadratic and cubic regression 𝐵-spline of 

the conditional mean using 9 initial knots. 

For the curves obtained in figure 1, we generate 9 initial knots via the quantile method. We choose 

the optimal number of knots that corresponds to the smallest value of AIC (see the R code).The 

final knots selected for the computations of the quadratic 𝐵-spline estimate are still 9 points located 

at (4.3, 4.9, 5.1, 5.5, 5.8, 6.1, 6.4, 6.8, 7.9), while the final knots selected for the cubic 𝐵-spline are 

located at (4.3, 4.93, 5.2, 5.6, 6, 6.3, 6.7, 7.9). 

Finally, we can notice from figure 1 that the fitted curves are not over all monotone, whearas the 

true regression is believed to be monotone. In the next section, we try to solve this problem by 

introducing the monotonicity constrained regression 𝐵-spline estimate of the regression function. 
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Example 2: Figure 2 provides the monotone quadratic regression 𝐵-spline fit of the regression 

function for the ”iris” dataset. 

Figure 2: Scatter plot of iris, along with monotone quadratic regression 𝐵-spline of the conditional    mean 

using 6 initial knots. 

For the computation of our monotone estimator we generate 6 initial knots via the quantile method. 

The optimal number of knots was selected using AIC criteria are still 6 points located at                 

(4.3, 5, 5.6, 6.1 ,6.52, 7.9). We can see from figure 2 that this estimator fits the data well. 

Example 3: In this example, we use the ”onion” dataset where the trend of the data is enjoying the 

monotonicity property. This dataset has been employed by Mary C. Meyer (2008) and exits in the 

R package ”SemiPar”. This dataset contains 84 sets of observations from an experiment involving 

the production of white Spanish onions in two South Australian locations with two variables, dens 

(𝑥): a real density of plants (plants per square meter) and yield (𝑦): onion yield (grams per plant).  
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The obtained regression and smoothing spline fits of orders 2 of the conditional mean are graphed 

in figure 3. 

Figure 3: Comparison of fits to the onion data. The unconstrained quadratic regression and smoothing spline 

estimates of the conditional mean.  

For the regression 𝐵-spline estimate we use 9 initial knots chosen by making use of the uniform 

method. The final knots are located at (18.78, 42.5, 66.2, 89.9, 113.6, 137.3, 161.04, 184.75), while 

the optimal λ in the smoothing spline was selected via SIC. 

Example 4: Figure 4 provides the monotone quadratic regression and smoothing 𝐵-spline fits of 

the mean function for the ”onion” dataset. 
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Figure 4: Comparison of fits to the onion data. The monotone quadratic regression and smoothing spline 

estimates of the conditional mean.  

For the regression 𝐵-spline estimate we used 9 initial knots chosen by making use of the uniform 

method. The final knots are still 9 points located at (18.78, 39.52, 60.27, 81.01, 101.76, 122.51, 

143.25, 164, 184.75), while the optimal λ in the smoothing spline was selected via SIC.                            

4.   Some Monte-Carlo Evidence 

      In this study, some simulation experiments were used to compare the performance of the 

monotone estimators: regression 𝐵-spline estimator 𝑔̂𝑟
∗(𝑥) and the smoothing 𝐵-spline estimator 

𝑔̂𝑠
∗(𝑥) of the conditional mean in terms of the Mean Squared Error (𝑀𝑆𝐸) and the 𝐵𝑖𝑎𝑠. Both 

estimators are quadratic and constrained to be monotone increasing. These two estimators will be 

compared with the monotone estimator 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥). The experiments all employ the regression 

model 

                                                 𝑦𝑖 = 𝑔(𝑥𝑖) + 𝑢𝑖 , 𝑖 = 1, 2, . . . , 𝑛,                                                           (17) 
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where  𝑥𝑖′𝑠 are uniformly distributed 𝑈(0,1), 𝑢𝑖′𝑠 represent random errors generated from 

𝑁(0,0.1),  and the mean function is linear monotone 𝑔(𝑥) = 𝑥, or monotone concave 𝑔(𝑥) = √𝑥, 

or only monotone 𝑔(𝑥) = 𝑒𝑥𝑝(−5 + 10𝑥) (1 + 𝑒𝑥𝑝(−5 + 10𝑥))⁄ . The experiments use different 

sample sizes 𝑛 = 10, 20, 30, 50, 100, 200. 

In order to obtain the estimated 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 of all estimators, one can proceed as follows: 

a) Generate 1000 samples of size 𝑛 from the model (17). 

b) For each simulated sample, calculate the 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 for all estimators as follows 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑔̂(𝑥𝑖) − 𝑔(𝑥𝑖))2

𝑛

𝑖=1

,    𝐵𝑖𝑎𝑠 =
1

𝑛
∑(𝑔̂(𝑥𝑖) − 𝑔(𝑥𝑖))          (18)

𝑛

𝑖=1

 

             where 𝑔̂(𝑥𝑖)𝜖{𝑔̂𝑟
∗(𝑥), 𝑔̂𝑠

∗(𝑥), 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥)} 

c)  Compare the averaged 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 over the 1000 replications, for each sample size 𝑛. 

 

Table A: Model 𝑔(𝑥) = 𝑥. Averaged 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 for the 𝑔𝑟
∗(𝑥), 𝑔𝑠

∗(𝑥), 𝑔𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) estimators of the 

conditional mean. 

 

 𝑴𝑺𝑬 𝑩𝒊𝒂𝒔 

N 𝑔̂𝑟
∗(𝑥) 𝑔̂𝑠

∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) 𝑔̂𝑟

∗(𝑥) 𝑔̂𝑠
∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟

∗ (𝑥) 

10 0.0071062 0.0033908 0.0019476  0.0003996  0.0010785 -0.0002623 

20 0.0064112 0.0016253 0.0009999 -0.0012291  0.0003488 -0.0000716 

30 0.0059819 0.0011350 0.0006869 -0.0024229  0.0004659 -0.0008236 

50 0.0056175 0.0009196 0.0004199 -0.0016280 -0.0000701  0.0003146 

100 0.0053281 0.0007542 0.0001977 -0.0011094  0.0000646  0.0000582 

200 0.0051531 0.0006201 0.0000984 -0.0008347 -0.0001930 -0.0001368 
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      Table B: Model 𝑔(𝑥) = √𝑥. Averaged 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 for the  𝑔𝑟
∗(𝑥), 𝑔𝑠

∗(𝑥), 𝑔𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) estimators                

      of the conditional mean 

     

     Table C: Model 𝑔(𝑥) = 𝑒𝑥𝑝(−5 + 10𝑥) (1 + 𝑒𝑥𝑝(−5 + 10𝑥))⁄ . Averaged 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 for the     

       𝑔𝑟
∗(𝑥), 𝑔𝑠

∗(𝑥), 𝑔𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) estimators of the conditional mean. 

 

 

 

 

 

 𝑴𝑺𝑬 𝑩𝒊𝒂𝒔 

n 𝑔̂𝑟
∗(𝑥)   𝑔̂𝑠

∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) 𝑔̂𝑟

∗(𝑥)   𝑔̂𝑠
∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟

∗ (𝑥) 

10 0.0069589 0.0028722 0.0037107  0.0002577  0.0010681  0.0006360 

20 0.0060667 0.0014676 0.0029485  0.0002866 -0.0003633 -0.0003750 

30 0.0056609 0.0011707 0.0026401 -0.0013210  0.0000956  0.0001269 

50 0.0053708 0.0009417 0.0024789  0.0000805 -0.0004291 -0.0004736 

100 0.0052085 0.0007365 0.0023909  0.0001741  0.0000987 -0.0002787 

200 0.0051078 0.0005773 0.0022791  0.0000662  0.0000942  0.0001721 

 𝑴𝑺𝑬 𝑩𝒊𝒂𝒔 

n 𝑔̂𝑟
∗(𝑥) 𝑔̂𝑠

∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) 𝑔̂𝑟

∗(𝑥) 𝑔̂𝑠
∗(𝑥) 𝑔̂𝑟𝑒𝑎𝑟𝑟

∗ (𝑥) 

10 0.0140371 0.0114539 0.0080644 -0.0096964  0.0001058  0.0001285 

20 0.0080728 0.0076476 0.0080416 -0.0018572 -0.0007189  0.0002731 

30 0.0039777 0.0025782 0.0079643 -0.0001857  0.0004105 -0.0007188 

50 0.0061333 0.0009160 0.0078653  0.0011354  0.0001406 -0.0006060 

100 0.0057008 0.0006304 0.0078629 -0.0000828  0.0001089  0.0001308 

200 0.0053320 0.0005269 0.0078231  0.0007071 -0.0002570 -0.0001597 
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5.   Conclusions 

In this paper, we studied and compared the performance of the monotone estimators: regression 

𝐵-spline estimator 𝑔̂𝑟
∗(𝑥), the smoothing 𝐵-spline estimator 𝑔̂𝑠

∗(𝑥) and the rearrangement estimator 

𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥) of the conditional mean in terms of the Mean Squared Error (𝑀𝑆𝐸) and the 𝐵𝑖𝑎𝑠. The 

results are displayed in Tables A, B and C. We can conclude from these tables that the 

rearrangement estimator 𝑔̂𝑟𝑒𝑎𝑟𝑟
∗ (𝑥)  performs better in terms of 𝑀𝑆𝐸 followed by the smoothing 

spline estimator 𝑔̂𝑠
∗(𝑥) when the regression function is linear monotone, whereas the 𝑔̂𝑠

∗(𝑥)  

estimator performs better in terms of 𝑀𝑆𝐸 compared with other estimators among other scenarios. 

In addition, the bias of all monotone estimators is too small (negligible), and hence most of the 

error comes from the variance. As a future work, I will extend my work for the problem of 

estimating regression curves using regression and penalized cubic splines under single and 

multiple shape constraints. 
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