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Abstract

In this research, regression and smoothing spline approximations are used and compared for
estimating the conditional mean function. Major attention is directed towards shape constrained
estimation. In many applications monotonicity is an integrated part of the regression functions g(-)
being fitted. Monotonicity is obtained here free of charge in the sense that the constrained fits
inherit the asymptotic properties of the unconstrained estimates. The main tool is the use of
quadratic B-splines. Some simulation experiments have been undertaken to evaluate finite-sample
performance of the presented monotone ‘regression’ and ‘smoothing’ spline estimators g and gs.
The monotone estimator gr...- obtained by applying the modern rearrangement technique is used
as a benchmark in various constrained (linear monotone, monotone concave and only monotone)
scenarios, for different sample sizes. The resulting Mean Squared Error estimates indicate that
Grearr 1S the winner only when the true regression function is linear monotone. The smoothing
spline g is superior in the other scenarios when it comes to estimate the regression mean. Practical
guidelines to effect the necessary computations and comparisons of the different estimators are

provided by making use of the R software.

Keywords: Monotonicity, B-splines Approximations, Regression Spline Estimator, Smoothing

Spline Estimator, Rearrangement Estimator.
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1. Introduction

Nonparametric regression analysis is an increasingly popular tool for the purpose of data
smoothing including kernel estimators (Gasser and Muller (1979)), smoothing spline estimators
(Eubank (1988)), regression spline estimators (Friedman and Silverman (1989)) and B-spline
estimators (He and Shi (1994)). We refer to the books of Wahba (1990) for an overview on the
topic of spline models in traditional regression analysis, and to the books of de Boor (2001) and

Schumaker (2007) for a modern treatment of splines.

A Dbasic problem in many areas of statistics is the estimation of an unknown target function
g(x). In this paper we focus on the problem of estimating the conditional mean function using
regression and smoothing B-spline approximations of different orders in the unconstrained case

and under the monotonicity constraint.
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The conditional mean function describes how the mean of a response variable Y changes with a
vector of covariates X and minimizes a sum of least-square errors. In many applications,
monotonicity is an integrated part of the function being fitted. For example, growth curves (e.g.,
weight or height of growing objects over time) are known to be increasing. Typical examples in
economics include the evolution of outputs (Y) versus the stock of capital (X) at the country level,
expenditures (Y) versus incomes (X) at the household level (Lee et al. (2009)). Other practical
applications appear in medical sciences where the probability of contracting a certain disease (say
cancer) depends monotonically on certain factors (say smoking frequency, drinking frequency and
weight) (Dette and Scheder (2006)). Such examples are abundant in economics, environment,

medical sciences and other areas (see, e.g., Ramsay (1988)).

The motivation of using splines in this work lies in their unmatched flexibility and adaptivity
as well as their great approximation power. Splines are constructed as piecewise polynomials with
specified continuity constraints. These continuity characteristics and the number of parameters
defining a spline function depend on a knot mesh at which the polynomial pieces are connected.
The main challenge when optimizing splines is determining the number and the locations of the
knots. This requires a good initial guess of the knot locations (Ruppert (2002)). Once the sequence
of knots is given, the splines can easily be computed for any desired order. There are three general
approaches to spline fitting: regression splines, smoothing splines and penalized splines. The
fundamental difference between the regression and smoothing splines is that smoothing splines
explicitly penalize roughness and use the data points themselves as potential knots whereas
regression splines place knots at equidistant or equiquantile points. A special class of splines,
called B-splines, is a generalization of the Bezier curve (Racine). B-spline estimates are defined
as the scalar product of their normalized basis functions [having order (p + 1) and number of inter-
knots segmentsk,, ] and the coefficients of these basis functions which are obtained by solving a

programming problem (de Boor (2001)).

The monotonization method we propose is inspired from He and She (1998). It is based on the

use of quadratic B-splines on a selected set of knots.
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Monotone regression and smoothing splines can be obtained by adding simple linear constrains to
the program already in use for calculating the unconstrained estimator. Cubic and higher-order
splines are more appealing for smoothness, but monotonicity can no longer be characterized as
linear constraints at the knots. For our purpose of estimating the regression mean curve, we will
compare the presented monotone quadratic B-spline fits with a monotonic estimate obtained by
applying the promising rearrangement technique initiated by Dette, Neumeyer and Pilz (2006) and
popularized by Chernozhukov, Fernandez-Val and Galichon (2009). This benchmark estimator is
obtained via a rearrangement transformation of the original unrestricted estimate, say g(x) of the
target function g(x) to a monotonic estimate gy.q,»- The increasing rearrangement operator
simply transforms a function g to the quantile function g* of the random variable g(U)when
U~U(0,1). The rearranged estimator g,.., has the advantage over the original estimator to be
monotone whenever the latter is not monotonic, but also to have a smaller estimation error in the

LP norm.

A huge amount of research has been carried out in the past few decades on nonparametric
estimation of the conditional mean function based on the idea of regression and smoothing splines.
More recent references on the topic of smoothing splines include Wahba (1990), Hardle (1990),
Hastie and Tibshirani (1990), Green and Silverman (1994) and Eubank (1999). The choice of the
smoothing parameter in connection with the averaged mean squared error was initiated in a series
of early papers, including Wahba and Wold (1975) and Craven and Wahba (1978).

A number of authors have come up with different solutions to the problem of estimating
regression curves using regression spline techniques including Stone (1985), Stone (1994), and
Huang (2003). More recent attempts of using monotonized spline smoothers can be found in the
context of mean regression problems including Lu et al. (2007), Meyer (2008), Wang and Yang
(2009) and Pya and Wood (2015). Early works combining smoothness with multiple shape
restrictions in the regression setting include, for instance, Wright and Wegman (1980) and Ramsay
(1988).



Multi-Knowledge Electronic Comprehensive Journal for Education and Science Publications (MECSJ)
ISSUE (35), August (2020)

ISSN: 2616-9185

Restricted spline smoothing has also been studied by Mammen (1991) and Mammen and Thomas-
Agnan (1999), Pal and Woodroofe (2007) with minimizing a penalized least squares criterion
incorporating monotonicity constraints. Finally, Chernozhukov, Fernandez-Val and Galichon
(2009) proposed point and interval estimators of monotone functions using the rearrangement

method, first initiated by Dette, Neumeyer and Pilz (2006).

To evaluate finite-sample performance of the presented monotone ‘regression’ and ‘smoothing’
spline estimators g, and g5, we have undertaken some simulation experiments. The experiments
employ three constrained scenarios: linear monotonicity, monotone concavity and single
monotonicity. We compare the accuracy of these spline smoothers relative to the ‘rearranged’
estimator gr.. by computing Monte Carlo estimates of their bias and mean-squared error for
different sample sizes. The choice of smoothing parameters for regularizing both estimated
quadratic spline functions is a major issue in practice, but the monotonicity constraint makes this
selection easier than the unconstrained smoothing problem: it reduces sharp changes in the slope
and curvature of the estimated regression functions. Considering a set of knots equally spaced in
percentile ranks, an adequate number k of inter-knot segments in the ‘regression’ spline can be
determined by analogy to the popular Akaike information criterion (AIC). In what concerns the
‘smoothing’ spline estimator, we implement a Schwarz information criterion (SIC) to select the

optimal smoothing parameter A.

2. Estimating the Conditional Mean

As the main purpose of this study is to use B-spline approximations for estimating conditional

mean function, we shall first give the general definition of a polynomial spline.

Definition

Denote a partition of an interval [a,b] by a =t, <t; <...t,, = b. For an integer p > 0, a
polynomial spline of order (p + 1) with simple knots ¢;,..., t, _4 is any function s(-) from [a, b]

to R such that
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e s(°) is continuously differentiable until order (p + 1) [if p > 1],
e The restriction of s(-) to inter-knot intervals (a, t4],..., (t;, tis1], . .-, (tk, -1, b], coincides

with a polynomial of degree less than or equal to p.

In this research we focus on estimating the regression mean function using both regression and
smoothing B-spline approximations under the unconstrained and the monotonicity constraint

based on the least-squares principle. We restrict ourselves to the interval [a, b] = [0, 1].

The Problem

Suppose that n pairs of observations {(x;,y;),i =1,2,...,n}, with a =x; <x; <...<x, <

Xn+1 = 1, are available to estimate the mean function

g(x) = arg mingeg E[(Y — 0)*|X = x] 1)
We consider the following regression model:

yi=gx)+u,i=12,...,n, (2)
where the regression errors u; represent a random noise with mean 0 given the covariate x;.

We assume that the function g has a uniformly continuous and bounded second order derivatives.
It is then well known that the functions g and g/ can be uniformly approximated by quadratic B-

splines and their derivatives. Here we restrict ourselves to x €[0,1].

Let 0 =ty <ty <...ty, = 1bea partition of [0,1], and let N = k,, + p, where k,, represents
the number of inter-knot segments and (p + 1) defines the order of the spline approximation. We

will denote by Sp 1 the space of polynomial splines of order (p + 1) with knot mesh (ti)i.‘;lo.

Let m(x) = (w1 (x),...,my(x))", with m;(x) being the normalized B-spline basis functions.
The motivation here is to estimate the conditional mean using regression and smoothing B-spline

approximations.
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2.1. Regression Spline Estimators
2.1.1. Unconstrained spline smoothers

According to the regression model (2), a regression B-spline estimate g, € Sp  of the conditional

mean g(x) can be defined as
gr =m0’ a, ©)

where @, can be formulated as follows

n
@, = arg mingegn Z(yi —m(x)Ta)?. (4)

=1

The least-squares minimization problem (4) represents a special subclasses of convex optimization
problems without constraints. Write y = (y4,¥,,...,¥,) € RY, and define the basis matrix
T € RN by

mj=mi(x),i=1,...,n j=1..N

(i.e. jth column of m gives the evaluations of m; over the points x4, ..., x,). Then, according to

Boyd and Vandenberghe (2004), the analytical solution of this minimization problem is given by
a=(n'm)'n’y ()

There are good algorithms and software implementations for solving least-squares problem to
high accuracy, with very high reliability. Least-squares problems are used widely in statistical
applications such as interpolation, extrapolation and smoothing of data, and also they used in
statistical interpretations, for example in the R package ”crs” in order to build the B-spline

estimator of the regression mean function.

The selection of knots

ken

For the selection of the initial knots T = (t;);Z,, we can perform “crs” function through “crs”

package using the options “uniform” or “quantile”, but for choosing the optimal number of knots
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we use AIC criteria based on least-squares deviation which is defined as follows

+2(ky, +p)/n, (6)

1 n
AIC(T) = log [ ;Z(}/i = Gr(x))?

where k,, and p are defined previously.

The unconstrained regression B-spline estimate of the conditional mean can be implemented
easily using crs function through crs package (Racine, J., Nie, Z. and Ripley, B. D. (2015)) in R
software. The coefficients @, of B-spline basis functions estimate can also be estimated though crs
function. The number of knots can be calculated through crs function using the option ’segments’,
where the number of segments is equal to the number of knots -1. The knots can be generated
using (default knots = 0 quantiles 0) specifying where knots are to be placed. Quantiles specifies
knots placed at equally spaced quantiles and knots = 0 quantiles 0 specifies knots placed at equally
spaced intervals, we can also use the option degree for specifying the polynomial degree of the B-
spline basis for each dimension of the continuous viable x (default degree = 3, i.e. cubic spline).
Finally, we perform AIC criterion for selecting the optimal number of knots by computing the
regression B-spline estimators for N = 0,...,nknots, and then select N that corresponds to the
smallest AIC.

The quadratic regression B-spline estimator is a good tool for estimating the unknown
regression curves, but of course higher-order splines are often more appealing for smoothness.
This section carry out comparison between quadratic and cubic regression B-spline estimators of

the mean function.

2.1.2. Constrained quadratic spline smoothers

With the monotonicity constraint in mind, the isotonization methods that have been proposed
and studied in the literature by most authors tend to be either much more computationally
expensive or less flexible for modeling or harder to analyze mathematically. We propose in this
section a simple but effective monotone smoothing method based on constrained least-squares

deviation principle. More specifically, we focus on quadratic constrained B-spline estimation.
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A quadratic monotone regression B-spline estimate gy € Sp  of the conditional mean g(x) can be

defined as
gr = n(x)" &y, (7)

where @, can be formulated as follows

n
a; = argmingegn ) (v = n(x) @2, (®)
i=1
Subject to
(m/ (E)"a=0,j=01,...k,, (9)

For the computation of the coefficients &, and the estimator itself, first we create the basis functions
of order 2 of the B-spline using 6 knots via the quantile method. Afterwards, we used the
constrained least-squares algorithm with (k, + 1) linear constraints for solving the quadratic
minimization problem. The resulting solution gives us a vector including the coefficients of the
basis functions of the B-spline, and then we make scalar product between the coefficients and the
basis functions in order to get the quadratic monotone B-spline curve. The implementation of this

estimator was already done by Jeffrey S. Racine.

2.2. Smoothing Spline Estimators

In this section, we use the smoothing spline technique for estimating the conditional mean which
is based on the least-squares principle.

2.2.1. Unconstrained spline smoothers

Using the regression model (2), the smoothing B-spline estimate g,(x) of the conditional mean

g(x) can be defined as

gs(x) = m(x)" &, (10)

where
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n 1
Qg = arg minggn Z(yl- —a(x)Ta)? + lf[rt/(t)Ta]zdt (11)
i 0

=1
Subject to the monotonicity constraints
(/ E)NTa=0,j=01,...k,, (12)

The first term of (11) captures the fit to the data and the second one penalizes the curvature.
The penalty constant 2 > 0 plays the role of the smoothing parameter which controls the tradeoff
between the two terms. A A that is too close to zero will yield an estimate that interpolates the data,
and a A that is too big will produce an estimate practically equivalent to the linear regression

estimate of the data.

For the computation of the coefficients @, we used the code that was implemented by Mary
C. Meyer which is based on least-squares algorithm. In this code, the ”coneproj” package has been
employed in R software with the function ’penspl” which takes the arguments, (1 for monotone
increasing and 2 for monotone decreasing), x, y, k (the number of knots chosen by uniform”

method), g (degree of the penalty) and (A > 0).

Smoothing parameter selection

In all smoothing techniques, a critical problem is the selection of the smoothing parameter A.
When using smoothing splines one does not need to choose the location of knots, since the knots
are chosen to be typically the design points or the number of knots is too large, and the smoothness

of the estimate is controlled only via the smoothness parameter.

In the literature, there are several methods for choosing A including Schwarz-type information
criterion (SIC) used in Koenker et al. (1994), and He, Ng and Portnoy (1998), Cross validation
(CV) and generalized cross-validation (GCV ) (Wahba (1985)). Here we will restrict our attention
to (SIC) criterion that is defined as follows

1
+5palogm/n,  (13)

1 n
SIC(A) = log[;Z(yi — a2 (x:))?

10
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where g, is the smoothing spline estimator g, that corresponds to the specified smoothing
parameter A and p;, is the number of interpolated data points that serves as a dimensionality

measure of the fitted model.

It is important to note that the first term of SIC becomes infinitely small if g, interpolates every
single data point. As a result, the A that minimizes SIC could be too small for unconstrained fits.
2.2.2. Constrained quadratic spline smoothers

When taking into account the monotonicity constraint, then the quadratic smoothing B-spline

estimate of the conditional mean can be defined as
gs(x) = m(x)" @, (14)

where

n 1
Q% = arg mingegy Z(yi —n(x)Ta)? + AJ[n/(t)Ta]zdt. (15)
i=1 0

Subject to the monotonicity constraints

(W &NTa=0,j=01,... k,, (16)
For the calculation of g; (x) estimator, we use the function penspl with the same arguments as in
the unconstrained case and with the constrained fit (cfit).
3. Results and Discussion

The following examples will be studied with two real datasets in order to understand the
monotonicity and non-monotonicity of B-spline smoothing estimators of the conditional mean

function.

Example 1: This data example serves to illustrate the case where the regression B-spline estimate

doesn’t enjoy the monotonicity property even if g(-) does. We use the dataset iris” in the R

11
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package MASS, this dataset contains 150 pairs of observations of the measurements in centimeters
of the variables, Sepal Length (x) and Petal Length (y). We use the regression B-spline of orders

2 and 3 to estimate the conditional mean function as appears in figure 1.

— Quadratic B-spline
= Cubic B-spline

Petal Lenght

45 50 55 6.0 6.5 70 75 8.0

Sepal Length

Figure 1: Scatter plot of the iris data, along with unconstrained quadratic and cubic regression B-spline of

the conditional mean using 9 initial knots.

For the curves obtained in figure 1, we generate 9 initial knots via the quantile method. We choose
the optimal number of knots that corresponds to the smallest value of AIC (see the R code).The
final knots selected for the computations of the quadratic B-spline estimate are still 9 points located
at (4.3,4.9,5.1,5.5,5.8,6.1, 6.4, 6.8, 7.9), while the final knots selected for the cubic B-spline are
located at (4.3, 4.93,5.2,5.6, 6, 6.3, 6.7, 7.9).

Finally, we can notice from figure 1 that the fitted curves are not over all monotone, whearas the
true regression is believed to be monotone. In the next section, we try to solve this problem by

introducing the monotonicity constrained regression B-spline estimate of the regression function.

12
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Example 2: Figure 2 provides the monotone quadratic regression B-spline fit of the regression

function for the ”iris” dataset.

W =

Petal Length

45 50 55 60 65 70 75 80
Sepal Length
Figure 2: Scatter plot of iris, along with monotone quadratic regression B-spline of the conditional mean

using 6 initial knots.

For the computation of our monotone estimator we generate 6 initial knots via the quantile method.
The optimal number of knots was selected using AIC criteria are still 6 points located at
(4.3,5,5.6,6.1,6.52,7.9). We can see from figure 2 that this estimator fits the data well.

Example 3: In this example, we use the ”onion” dataset where the trend of the data is enjoying the
monotonicity property. This dataset has been employed by Mary C. Meyer (2008) and exits in the
R package ”SemiPar”. This dataset contains 84 sets of observations from an experiment involving
the production of white Spanish onions in two South Australian locations with two variables, dens

(x): a real density of plants (plants per square meter) and yield (y): onion yield (grams per plant).

13



Multi-Knowledge Electronic Comprehensive Journal for Education and Science Publications (MECSJ)
ISSUE (35), August (2020)

ISSN: 2616-9185

The obtained regression and smoothing spline fits of orders 2 of the conditional mean are graphed

in figure 3.

— Regression B-spline
= — Smoothing B-spline

55

Logyield (grams per plant
45
]

4.0

35

T T T
50 100 150

Density(plants per sqm)

Figure 3: Comparison of fits to the onion data. The unconstrained quadratic regression and smoothing spline

estimates of the conditional mean.

For the regression B-spline estimate we use 9 initial knots chosen by making use of the uniform
method. The final knots are located at (18.78, 42.5, 66.2, 89.9, 113.6, 137.3, 161.04, 184.75), while

the optimal A in the smoothing spline was selected via SIC.

Example 4: Figure 4 provides the monotone quadratic regression and smoothing B-spline fits of

the mean function for the onion” dataset.

14
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— Regression B-spline

55

—— Smoothing B-spline

Log yield (grams per plant)
45 50

4.0

35
L

T T T
50 100 150

Density(plants per sqm)

Figure 4: Comparison of fits to the onion data. The monotone quadratic regression and smoothing spline

estimates of the conditional mean.

For the regression B-spline estimate we used 9 initial knots chosen by making use of the uniform
method. The final knots are still 9 points located at (18.78, 39.52, 60.27, 81.01, 101.76, 122.51,
143.25, 164, 184.75), while the optimal A in the smoothing spline was selected via SIC.

4. Some Monte-Carlo Evidence

In this study, some simulation experiments were used to compare the performance of the
monotone estimators: regression B-spline estimator g, (x) and the smoothing B-spline estimator
J+(x) of the conditional mean in terms of the Mean Squared Error (MSE) and the Bias. Both
estimators are quadratic and constrained to be monotone increasing. These two estimators will be

compared with the monotone estimator gy...-(x). The experiments all employ the regression
model

yi=gx)+u,i=12,...,n, (17)

15
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where x;'s are uniformly distributed U(0,1), u;'s represent random errors generated from
N(0,0.1), and the mean function is linear monotone g(x) = x, or monotone concave g(x) = V/x,
or only monotone g(x) = exp(—=5 + 10x)/(1 + exp(—5 + 10x)). The experiments use different
sample sizes n = 10, 20, 30, 50, 100, 200.

In order to obtain the estimated MSE and Bias of all estimators, one can proceed as follows:

a) Generate 1000 samples of size n from the model (17).

b) For each simulated sample, calculate the MSE and Bias for all estimators as follows
1% 1
MSE == (90 - g(x))*, Bias == (§(x) —g(x)) (1)
i=1 i=1
where §(x)e{gr(x), §s(X), Grearr(X)}

c) Compare the averaged MSE and Bias over the 1000 replications, for each sample size n.

Table A: Model g(x) = x. Averaged MSE and Bias for the gr(x), Js(x), Grearr(x) estimators of the

conditional mean.

MSE Bias

N gr(x) gs (%) Grearr(X) gr(x) gs (%) Grearr(X)
10 | 0.0071062 | 0.0033908 | 0.0019476 | 0.0003996 | 0.0010785 | -0.0002623
20 | 0.0064112 | 0.0016253 | 0.0009999 | -0.0012291 | 0.0003488 | -0.0000716
30 |0.0059819 | 0.0011350 | 0.0006869 | -0.0024229 | 0.0004659 | -0.0008236
50 | 0.0056175 | 0.0009196 | 0.0004199 | -0.0016280 | -0.0000701 | 0.0003146
100 | 0.0053281 | 0.0007542 | 0.0001977 | -0.0011094 | 0.0000646 | 0.0000582
200 | 0.0051531 | 0.0006201 | 0.0000984 | -0.0008347 | -0.0001930 | -0.0001368

16
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Table B: Model g(x) = vx. Averaged MSE and Bias for the §:(x), §i(x), gr

of the conditional mean

earr(X) estimators

MSE Bias

n 9r(x) gs(x) Grearr(X) | Gr(x) gs(x) Jrearr(X)
10 | 0.0069589 | 0.0028722 | 0.0037107 | 0.0002577 | 0.0010681 | 0.0006360
20 | 0.0060667 | 0.0014676 | 0.0029485 | 0.0002866 | -0.0003633 | -0.0003750
30 |0.0056609 | 0.0011707 | 0.0026401 | -0.0013210 | 0.0000956 | 0.0001269
50 |0.0053708 | 0.0009417 | 0.0024789 | 0.0000805 | -0.0004291 | -0.0004736
100 | 0.0052085 | 0.0007365 | 0.0023909 | 0.0001741 | 0.0000987 | -0.0002787
200 | 0.0051078 | 0.0005773 | 0.0022791 | 0.0000662 | 0.0000942 | 0.0001721

Table C: Model g(x) = exp(—=5+ 10x)/(1 + exp(=5 + 10x)). Averaged MSE and Bias for the

Jr(x), gs(x), Grearr(x) estimators of the conditional mean.

MSE Bias
n gr (%) 9s (%) Grearr(X) gr (%) 9s (%) Grearr(X)
10 | 0.0140371 | 0.0114539 | 0.0080644 | -0.0096964 | 0.0001058 | 0.0001285
20 | 0.0080728 | 0.0076476 | 0.0080416 | -0.0018572 | -0.0007189 | 0.0002731
30 | 0.0039777 | 0.0025782 | 0.0079643 | -0.0001857 | 0.0004105 | -0.0007188
50 | 0.0061333 | 0.0009160 | 0.0078653 | 0.0011354 | 0.0001406 | -0.0006060
100 | 0.0057008 | 0.0006304 | 0.0078629 | -0.0000828 | 0.0001089 | 0.0001308
200 | 0.0053320 | 0.0005269 | 0.0078231 | 0.0007071 | -0.0002570 | -0.0001597
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5. Conclusions

In this paper, we studied and compared the performance of the monotone estimators: regression
B-spline estimator gy (x), the smoothing B-spline estimator g; (x) and the rearrangement estimator
Grearr(x) Of the conditional mean in terms of the Mean Squared Error (MSE) and the Bias. The
results are displayed in Tables A, B and C. We can conclude from these tables that the
rearrangement estimator gy ...(x) performs better in terms of MSE followed by the smoothing
spline estimator g;(x) when the regression function is linear monotone, whereas the g;(x)
estimator performs better in terms of MSE compared with other estimators among other scenarios.
In addition, the bias of all monotone estimators is too small (negligible), and hence most of the
error comes from the variance. As a future work, | will extend my work for the problem of
estimating regression curves using regression and penalized cubic splines under single and

multiple shape constraints.
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