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Abstract:

We definition A metric space X is a topological space in which the topology is
given by a metric, or distance function, d, which is a non-negative, real valued
mapping of X x X with the following properties:

Forallx,y,z € X
(1) d(x,y) =0iffx=y,
(2) d(x,y) = d(y.x), and
(3) d(x,z) < d(xy) +d(y,2).

We shall denote by R the field of real numbers. Then we shall use the Cartesian
product

R"=R x R x ... x R of ordered n-tuples of real numbers (n factors).

Typical notation for x €R" will be x = (x4, ..., x,,).

It is known that:

a. The n-dimensional Euclidean space R" with the "usual distance", this is
Sometimes called the 2-metric d».
dy (,¥) = /X (i — ¥i)?.

b. The n-dimensional Euclidean space R" with the "taxi cab" metric, this is often

called the 1-metric d,.

dy (%, y) = 2izqlx; — il
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c. The n-dimensional Euclidean space R" with "supremum" or "maximum" metric,
It is often called the infinity metric d ..

de (x,¥) =max;<i<n {x; — yil}.

All of them are metric spaces [1, 2], and denote this metric space
(R™, d,),(R",d,), (R", d,,) respectively.

Let f be a function from a metric space (X, d) on a metric space (Y, p).

We say that f is an isometry if d(x, y) = p(f (x), f (), for any x, yeX.

It is known that the two spaces (R?,d,), (R?, d.,) are isometric. It is known, too,
that the space (R?, d,) is not isometric for both of them [3].

The proof of that (the space (R?, d,)is not isometric for both (R?,d,), (R?,dy)) is
based on that (R?,d,) is not isometric for (R?,d,,) , and that concludes that
(R?,d,) is not isometric for (R?,d,), too [3].

Here, we extend this conclusion by showing that the two spaces
(R™,d,), (R", d) are not isometric for every dimension,n > 2.

Keywords:"Metric spaces”, "usual distance”, "maximum metric", "taxi cab
metric", and "isometric between metric spaces".
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Our main result is the following theorem:
Theorem:
The two spaces (R™,d,), (R™, d,) are not isometric for every dimension ,n > 2.
Proof:
We suppose by contradiction that there is an isometry

f: (R",dy) - (R",d,).
Assume without loss of generality that f maps the origin to the origin. That means,

£(0,0.....,0) = (0,0.....,0),
Because if not, and:

f(0,0....,0) = (aq, .....,ay)
When a; € R forall 1 < i < n, and not all of them are zeros.
By looking at this function:
g: (R, dy) » (R™,dy)

When g(xq, ..., x) = (X1 — @y, ..., Xp — ay) forall x = (xjL;) € R™

It is clear that g is isometry because it is a sliding function, and the composing
function:

gef: (R dw) = (R, dy).
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Is isometry, depending on the state that the composition of an isometry function is
isometry as well.

By that:
(gof)(,..0) = g(f(O, ...,0)) =g(ay,...,a,)

=(a; —aq, ..., 0, — Qy)
= (0, ...,0)
That means that g o f is an isometry and maps the origin to the origin.
From here, it is possible to assume that there is an isometry function
¢: (R",ds) = (R", d3)
Moreover, it maps origin to origin:
Looking at the following points into (R", d,):
0: (0, ...,0)
x:(1,-1,...,0)
y:(=1,-1,0....,0)
2:(0,1,0,...,0)
It is clear that:
do(x,0) =de(y,0) = dy(z,0) = 1.

That means that x, y and z are three points at a unit circle that its center is the
origin.
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Moreover, it is clear, as well. That their (the three points x, y and z ) mutual
distance is 2 from each other:

Ao (x,V) = do(y,2) = do(x,2) = 2.
Now, by looking at the following points at (R", d,):
©(0), p(x), 9(¥), ¢(2)

It is clear that ¢ (0) = 0.
Since that ¢ is an isometry, and specifically, preserves distances,
Causing that:

d,(0,9(x)) = d(0, () = d2(0,90(2)) = 1
At the space (R™, d,).

Which means that the three points ¢ (x), ¢(v), ¢ (z) are three points at a unit circle
that its center is in the origin.

Furthermore, the mutual distances between each other are 2, because of the fact
that i is an isometry.

da(9(x), p(¥)) = dz(0(¥), 9(2)) = dy(9(x), 9(2)) = 2.

Which is contradiction, this state cannot happen at the space (R", d,).

This completes the proof of the theorem.
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Main result:
Our main result is the following theorem:
Theorem:

The two spaces (R™,d,), (R™, d,) are not isometric for every dimension,n > 2.

Conclusions:

After having the result mentioned above proven, we can refer to the following
Issues in question:

1. What are the dimensions (n), assuming that such dimensions exist, by which the
spaces (R™,d,),(R" d.) are isometric?

2. What are the dimensions (n), assuming that such dimensions exist, by which the
spaces  (R™,d,),(R"™ d,) are isometric?
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