

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Non-isometric between the Topological spaces (R^n,d_2) , (R^n,d_∞) for every dimension, $n\geq 2$

By: Wafiq Hibi

Assistant Professor

Wafiq. hibi@gmail.com, Wafiq. hibi@sakhnin.ac.il

Head of the Mathematics Department in Sakhnin College.

The College of Sakhnin

Academic College for Teacher Education

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Abstract:

We definition A metric space X is a topological space in which the topology is given by a metric, or distance function, d, which is a non-negative, real valued mapping of $X \times X$ with the following properties:

For all $x, y, z \in X$

(1)
$$d(x, y) = 0$$
 iff $x = y$,

(2)
$$d(x,y) = d(y,x)$$
, and

(3)
$$d(x,z) \le d(x,y) + d(y,z)$$
.

We shall denote by R the field of real numbers. Then we shall use the Cartesian product

 $R^n = R \times R \times ... \times R$ of ordered n-tuples of real numbers (n factors).

Typical notation for $x \in \mathbb{R}^n$ will be $x = (x_1, ..., x_n)$.

It is known that:

a. The *n*-dimensional Euclidean space \mathbb{R}^n with the "usual distance", this is Sometimes called the 2-metric d_2 .

$$d_2 (x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

b. The *n*-dimensional Euclidean space \mathbb{R}^n with the "taxi cab" metric, this is often called the 1-metric d_1 .

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|.$$

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

c. The *n*-dimensional Euclidean space R^n with "supremum" or "maximum" metric, It is often called the infinity metric d_{∞} .

$$d_{\infty}(x, y) = \max_{1 \le i \le n} \{|x_i - y_i|\}.$$

All of them are metric spaces [1, 2], and denote this metric space $(R^n, d_2), (R^n, d_1), (R^n, d_\infty)$ respectively.

Let f be a function from a metric space (X, d) on a metric space (Y, ρ) .

We say that f is an isometry if $d(x, y) = \rho(f(x), f(y))$, for any $x, y \in X$.

It is known that the two spaces (R^2, d_1) , (R^2, d_∞) are isometric. It is known, too, that the space (R^2, d_2) is not isometric for both of them [3].

The proof of that (the space (R^2, d_2) is not isometric for both $(R^2, d_1), (R^2, d_\infty)$) is based on that (R^2, d_2) is not isometric for (R^2, d_∞) , and that concludes that (R^2, d_2) is not isometric for (R^2, d_1) , too [3].

Here, we extend this conclusion by showing that the two spaces $(R^n, d_2), (R^n, d_\infty)$ are not isometric for every dimension, $n \ge 2$.

Keywords: "Metric spaces", "usual distance", "maximum metric", "taxi cab metric", and "isometric between metric spaces".

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

تلخيص البحث:

تعریف 1:

نعرّف بالرياضيات فراغ قياسي X، على أنه فراغ طوبولوجي بحيث أن الطوبولوجيا المعطاة عليه هي قياس أى دالة بُعد، معرفة كالتالى: $d: X \times X \to [0,\infty)$

 $(x,y,z \in X)$ وبحيث يتحقق لكل

$$d(x, y) = 0$$
 اذا وفقط اذا $x = y$ (1

$$.d(x,y) = d(y,x)$$
 (2)

$$d(x,z) \le d(x,y) + d(y,z)$$
(3)

وعندها يقال للزوج المرتب (X,d) المكوّن من الفراغ ودالة البعد المعرّفة عليه على أنه فضاء قياسيّ.

تعریف 2:

الفراغ النونيّ او الفراغ الإقليدي من البعد العام والذي يرمز له n ، R^n هو عدد صحيح موجب، يعرّف كالتالى:

$$R^n = \{(x_1,\ldots,x_n) \colon x_i \in R, 1 \le i \le n\}$$

حقائق 1:

• معروف أن الفراغ النونيّ صاحب البعد العام R^n مع دالة البعد العادية d_2 ، على أنه فضاء قياسي،[3]، ويرمز له (R^n,d_2) . الدالة d_2 تسمى دالة البعد العادية أو دالة البعد الإقليدية وهي معرفة:

$$d_2(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

• كذلك الفراغ النوني صاحب البعد العام R^n مع دالة البعد لمجموع القيم المطلقة d_1 ، هو أيضًا فضاء قياسي، [3]، ويرمز له (R^n, d_1) . الدالة d_1 تسمى دالة البعد لمجموع القيم المطلقة وهي معرفة:

$$d_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

www.mecsj.com/

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

• أيضًا الفراغ النوني صاحب البعد العام R^n مع دالة البعد العظمى , d_∞ , والذي يرمز له R^n , d_∞ الدالة d_∞ تسمى دالة البعد العظمى وهى معرفة:

$$d_{\infty}\left(x,y\right)=max_{1\leq i\leq n}\left\{\left|x_{i}-y_{i}\right|\right\}.$$

تعریف 3:

f نقول أن فضاءين قياسيين (X,d) و (X,d) متساويان فيما بينهما بالقياس إذا وجدت دالة

$$f:(X,d)\to (y,\rho)$$

تحقق:

 (Y, ρ) الدالة f من الفضاء القياسي (X, d) على الفضاء القياسي (Y, ρ) .

 $d(x,y) = \rho(f(x),f(y)): x,y \in X$ يتحقق لكل (2

 (Y, ρ) و (X, d) يذكر ان الدالة تسمى بهذه الحالة دالة المقياس بين الفضاءين

حقائق 2:

- معروف أن الفراغ النونيّ ثنائي الابعاد R^2 مع دالة البعد لمجموع القيم المطلقة d_1 أي الفضاء القياسي القياسي (R^2,d_1) والفراغ النوني ثنائي الابعاد R^2 مع دالة البعد العظمى أي الفضاء القياسي القياس، (R^2,d_∞) ، هما فضاوان متساويا القياس، (R^2,d_∞) .
- معروف أيضًا أن الفراغ النونيّ ثنائي الأبعاد R^2 مع دالة البعد العادية d_2 ، أي الفضاء القياسي مع كلا الفضاءين القياسيين (R^2,d_1) و (R^2,d_2) .

لبر هان الحقيقة الثانية يكفي بر هنة أن الفضاءين (R^2,d_∞) و (R^2,d_1) غير متساويين بالقياس وذلك اعتمادًا على الحقيقة الأولى حيث ان الفضاءين (R^2,d_0) و (R^2,d_1) هما نعم متساويا القياس.

في هذا المقال سنوستع هذه النتيجة ونبرهن أن الفضاءين: (R^n,d_2) و (R^n,d_2) غير متساويين في القياس لكل بعد $n\geq 2$.

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

اجمال:

ملخص هذا المقال أنه لدينا نتيجة رئيسية هي البرهان الرياضي للنظرية التالية:

نظرية:

 (R^n,d_∞) مع دالة البعد العظمى، d_∞ مع دالة البعد العام R^n مع دالة البعد العظمى، (R^n,d_2) فضاء قياسي، (R^n,d_2) مع دالة البعد العادية d_2 ، اي فضاء قياسي، R^n مع دالة البعد العادية d_2 ، اي فضاء قياسي، R^n مع دالة البعد العادية d_2 منساويين في القياس لكل بعد d_2 .

كلمات مفتاحية: "فضاء قياسي"، "البعد الإقليدي العادي"، "البعد لمجموع القيم المطلقة"، "دالة البعد العظمي"، "فضاءات متساوية القياس".

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Our main result is the following theorem:

Theorem:

The two spaces $(R^n, d_2), (R^n, d_\infty)$ are not isometric for every dimension $n \ge 2$.

Proof:

We suppose by contradiction that there is an isometry

$$f:(R^n,d_\infty)\to (R^n,d_2).$$

Assume without loss of generality that f maps the origin to the origin. That means,

$$f(0,0....,0) = (0,0....,0),$$

Because if not, and:

$$f(0,0...,0) = (a_1,...,a_n)$$

When $a_i \in R$ for all $1 \le i \le n$, and not all of them are zeros.

By looking at this function:

$$g:(R^n,d_\infty)\to (R^n,d_\infty)$$

When
$$g(x_1, ..., x_n) = (x_1 - a_1, ..., x_n - a_n)$$
 for all $x = (x_{i=1}^n) \in \mathbb{R}^n$.

It is clear that g is isometry because it is a sliding function, and the composing function:

$$g \circ f : (R^n, d_\infty) \to (R^n, d_2).$$

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Is isometry, depending on the state that the composition of an isometry function is isometry as well.

By that:

$$(g \circ f)(0,...,0) = g(f(0,...,0)) = g(a_1,...,a_n)$$

= $(a_1 - a_1,...,a_n - a_n)$
= $(0,...,0)$

That means that $g \circ f$ is an isometry and maps the origin to the origin.

From here, it is possible to assume that there is an isometry function

$$\varphi \colon (R^n, d_\infty) \to (R^n, d_2)$$

Moreover, it maps origin to origin:

Looking at the following points into (R^n, d_∞) :

$$0: (0, ..., 0)$$

 $x: (1, -1, ..., 0)$
 $y: (-1, -1, 0 ..., 0)$
 $z: (0, 1, 0, ..., 0)$

It is clear that:

$$d_{\infty}(x,0) = d_{\infty}(y,0) = d_{\infty}(z,0) = 1.$$

That means that x, y and z are three points at a unit circle that its center is the origin.

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Moreover, it is clear, as well. That their (the three points x, y and z) mutual distance is 2 from each other:

$$d_{\infty}(x,y) = d_{\infty}(y,z) = d_{\infty}(x,z) = 2.$$

Now, by looking at the following points at (R^n, d_2) :

$$\varphi(0), \varphi(x), \varphi(y), \varphi(z)$$

It is clear that $\varphi(0) = 0$.

Since that φ is an isometry, and specifically, preserves distances,

Causing that:

$$d_2(0, \varphi(x)) = d_2(0, \varphi(y)) = d_2(0, \varphi(z)) = 1$$

At the space (R^n, d_2) .

Which means that the three points $\varphi(x)$, $\varphi(y)$, $\varphi(z)$ are three points at a unit circle that its center is in the origin.

Furthermore, the mutual distances between each other are 2, because of the fact that ψ is an isometry.

$$d_2\big(\varphi(x),\varphi(y)\big)=d_2\big(\varphi(y),\varphi(z)\big)=d_2\big(\varphi(x),\varphi(z)\big)=2.$$

Which is contradiction, this state cannot happen at the space (R^n, d_2) .

This completes the proof of the theorem.

Issue (43), 2021

ISSN: 2616-9185

EOI: 10.11246/mecsj/01/43

Main result:

Our main result is the following theorem:

Theorem:

The two spaces $(R^n, d_2), (R^n, d_\infty)$ are not isometric for every dimension, $n \ge 2$.

Conclusions:

After having the result mentioned above proven, we can refer to the following issues in question:

- 1. What are the dimensions (n), assuming that such dimensions exist, by which the spaces $(R^n, d_1), (R^n, d_\infty)$ are isometric?
- 2. What are the dimensions (n), assuming that such dimensions exist, by which the spaces $(R^n, d_1), (R^n, d_2)$ are isometric?

Issue (43), 2021

ISSN: 2616-9185

EOI: 10,11246/mecsj/01/43

References:

[1] Abd Algani, Y. (2019). The Topological Connectivity of the Independence Complex of Circular-Arc Graphs. Universal Journal of Mathematics and Applications, 2 (4), 159-169.

- [2] Theodore w. Gamelin, Robert E. (2013) Introduction to topology. Dover Publications; Second edition
- [3] Leibowitz, D. (1997), Point Set Topology. The Open University of Israel.
- [4] Hibi, W. (2021) Isometric between spaces $l\infty$, l_1 , Materials Today: Proceedings, Article Type: SI: IVCSM-

2k47,https://www.editorialmanager.com/matpr/default.aspx.