
Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

1

Software Bugs

Aminah Saad Shalhoob Aldossary

Master of Science in Cloud Computing

University Of Leicester, UK

Lecture at King Faisal University, KSA

Email : aldossary@kfu.edu.sa

Abstract

The software industry has been endeavored to create perfect software for the final consumers, thus this is a

crucial challenge for software engineers to introduce effective techniques in order to increase the quality of

software. Despite the fact that writing software without bugs is theoretically possible, the majority of

software has bugs essentially, indeed there are roughly between 3 % to 20 % bugs every a thousand line of

code (NRC,1999 cited in Libicki et al., 2015, p.42). Software bugs are incorrect results or odd behaviours

resulted from errors or mistakes in program codes (Linfo, 2017). Bugs have effects on diverse stages of

software performance some of these impacts are limited such as nuisance user whereas others have serious

impacts which can lead to destroying the whole operating system (ibid). A good example is that an error in

Microsoft Windows System can lead to disabling the computer work (ibid). It would seem that since 1950s

software engineers have tried to create marbles, notions and methods in order to introduce an accurate

software (Lu Luo, p6). Moreover, some researchers consider that there are some techniques which are more

beneficial than others. This paper will outline some problems that are encountering programmers which

make it impossible to write free- bugs software, then it will describe some forms of software testing

techniques for finding and fixing bugs, finally compare techniques with each other through accuracy results

and framework.

Key words: Software, Bugs, Quality, White Box, Black Box.

mailto:aldossary@kfu.edu.sa

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

2

 الأخطاء البرمجيت

 الملخص

ُ ذم١ٕاخ ٌمذ سعد صٕاعح اٌثشِد١اخ لإٔشاء تشاِح ِثا١ٌح ٌٍّسرٍٙى١ٓ إٌٙائ١١ٓ، ٚتاٌراٌٟ فئْ ٘زا ٠ّثً ذحذ٠اً وث١شًا ٌّٕٙذسٟ اٌثشِد١اخ ٌرمذ٠

ٛٞ فعاٌح ِٓ أخً ص٠ادج خٛدج اٌثشِد١اخ. عٍٝ اٌشغُ ِٓ أْ وراتح اٌثشاِح دْٚ أخطاء ِّىٕح ِٓ إٌاح١ح إٌظش٠ح، فئْ غاٌث١ح اٌثشاِح ذح

الاخطاء اٌثشِد١ح ٟ٘ . اٌشِٛص اٌثشِد١ح٪ ِٓ الأخطاء فٟ وً أٌف سطش ِٓ 02٪ إٌٝ 3أخطاء تشىً أساسٟ، فٟ اٌحم١مح ٠ٛخذ ِا ٠مشب ِٓ

، تعض ٘زٖ ٝ ِشاحً ِرٕٛعح ِٓ أداء اٌثشٔاِحلأخطاء ٌٙا ذأث١شاخ عٍٔرائح غ١ش صح١حح اٚ سٍٛو١اخ غش٠ثٗ اٚ غ١ش ِرٛلعٗ ٚتراٌٟ فئْ ٘زٖ ا

ؤدٞ ذأٚلذ ذأث١شاخ خط١شج ٠ّىٓ أْ ذؤدٞ إٌٝ ذذ١ِش ٔظاَ اٌرشغ١ً تاٌىاًِ ٌثعضٙا، ت١ّٕا ٠ىْٛ اٌرسثة تئصعاج اٌّسرخذَا٢ثاس ِحذٚدج ِثً

ط١ً اٌحاسة ا٢ٌٟ تشىً وٍٟ. ِٚٓ الأِثٍح اٌد١ذج عٍٝ رٌه اْ خطأ ٚاحذ فٟ ٔظاَ اٌرشغ١ً ِا٠ىشٚسٛفد ٠ٕٚذٚص وف١ً ترعإٌٝ ذعط١ً عًّ

 ِٓ دْٚ اخطاء تشٔاِح ٌخٍكِٚفا١ُ٘ ٚطشق ِثاداعًّ اٌحاسة. ٠ثذٚ أْ ِٕٙذسٟ اٌثشِد١اخ حاٌٚٛا ِٕز خّس١ٕ١اخ اٌمشْ اٌعشش٠ٓ إٔشاء

، ٠شٜ تعض اٌثاحث١ٓ أْ ٕ٘ان تعض اٌرم١ٕاخ اٌرٟ ٟ٘ أوثش فائذج ِٓ غ١ش٘ا. سرٛضح ٘زٖ اٌٛسلح أٚ أْ ٠ىْٛ دل١ك ٌحذ ِا علاٚج عٍٝ رٌه

رصف تعض أشىاي ذم١ٕاخ سثُ خاٌٟ ذّاِاً ِٓ الأخطاء، لاخ اٌرٟ ذٛاخٗ اٌّثشِد١ٓ ٚاٌرٟ ذدعً ِٓ اٌّسرح١ً وراتح تشٔاِحتعض اٌّشى

 .ِٚماسٔح اٌرم١ٕاخ ِع تعضٙا اٌثعض ِٓ خلاي ٔرائح اٌذلح ٚالإطاس ٚإصلاحٙا،اخرثاس اٌثشاِح ٌٍعثٛس عٍٝ الأخطاء

 الأسود.الصنذوق الأبيض،ق والصنذ الجودة، الأخطاء، البرمجياث،الكلماث المفتاحيت:

.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

3

 1. Introduction

There are a number of obstacles which face programmers such as difficulty to write software without

errors especially currently with a substantial development in the software industry. Firstly, on the

program code level, consumers usually demand high functions, therefore, these functions are promoting

programmers to use huge and complex codes (Linfo,2017). For example, Microsoft Windows XP has

around 40 million of code (ibid). It is clear that the length and difficulty of the codes can lead to difficult

in avoiding bugs. Secondly, on the bugs level, according to Linfo (2017), as programs evolve as well as

bugs are becoming more complicated to deal with. Furthermore, some types of bugs are difficult to solve

(ibid). In the same way, Libicki et al.,(2015, p.54) confirm that it is difficult to eliminate some categories

of bugs in application software, thus programmers and developers need to use some techniques in order

to decline bugs. A perfect example is that Microsoft always uses some techniques for every new product

to make bugs usually limited (ibid). Finally, Spinellis (2006, p.92) implies that even adherence to

specific standards in order to make software without errors is going to create negative impacts on the

final outputs. This would appear to be correct because negative impacts on the final outputs may lead to

reducing the quality of software. The work of Spinellis (2006, p.92) shows that " As Pericles recognized,

creating a bug-free artifact is a lot more difficult than locating errors in it". It seems that this view is

valid because there are considerable obstacles which prohibit programmers and developers to introduce

an accurate software, as a result, they always need to use many types of tests in order to decrease bugs in

software.

2. Testing techniques

In fact, there are significant techniques for software testing in order to reduce the number of bugs.

Broadly, software prevalent techniques could be classified into four major testing techniques:

Correctness testing, Performance testing, Reliability testing and Security testing (Khan, 2010, pp. 24-

26). Firstly, correctness testing tries to maintain the minimum requirement of software through

observing software attitude and how can it deal with bugs (ibid). Furthermore, there are three categories

of correction testing: White box, Black box and Gray box, all of these boxes have a function to ensure

the requirement of software (ibid). In fact, white box focuses on the internal structures of software, thus

white box tests inputs data and observes appropriate process which software chooses in order to make

filters on these inputs to create more accurate outputs (Khan,2010, pp. 24-26).

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

4

 In the contrary black box focuses on the analysis of one aspect of software without regarding the

internal structures in order to find out the relationship between this element and others in the software

environment (ibid). It would seem that black box examines inputs and outputs either if they are within

acceptable range or not.

Khan (2010, p.26) observes that gray box works to integrate between white box and black box by

comparing between a piece of software against its stipulations. It is clear that the gray box tests to what

extent the results of white box and black box are correct. Secondly, performance testing. The aim of

performance testing is to identify to what extent the objects of software match with performance criteria

(Khan, 2010, p.26-27). According to Pan (1999), software is evaluated for their performance by three

main criteria resource usage, throughput, stimulus-response and time, typically this test has been done by

two main methods load testing or stress testing. However, Khan (2010, p.27) questions whether

performance testing can rely on it completely by software engineers when they are looking for bugs.

Thirdly, Reliability testing, as Khan(2010, p.28) points out, reliability testing is a significant method

because it finds out the bugs and deletes them before publishing software through choosing an effective

sampling to measure its accuracy, as a result, the developers' decisions depend on the results of

reliability testing. It seems that reliability testing works to cancel the bugs without working to fix them.

 Finally, Security testing, according to Pan (1999), bugs can be created by users through opening

security holes, therefore, software engineers and developers need to apply security testing. Security

testing gives a guarantee that no one can access the program and its functions only the persons who

allowed to do this (ibid). It seems that when developers and programmers only access the software this

will protect the program codes from any attempt to tamper, hence protecting software from any external

bugs, as a result, the kinds of bugs which must be encountered by developers and programmers will

decrease to just internal bugs. According to Khan(2010, p.28), the purpose of security testing is to find

and fix the major vulnerabilities which can damage the software, as a result, the software can run for a

long term without substantial problems. Software tests aim to find and fix the software problems that

does not necessarily lead to improving the quality and reliability of the software.

For instance, in California in 1991 the telephone did not work completely, the reason was changing three

lines of codes (Pan,1999). It would seem that software tests can find and fix bugs.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

5

 However, in some cases, software tests can lead to creating a new problem because the tests themselves

have some weaknesses aspects.

3. compare between software testing

There are two main level to compare between software testing. To begin with, correctness testing and

performance testing. In fact, correctness testing has more accurate results than performance testing

because during performance testing there are some significant mistakes such as ignoring of bugs in input

and wrong analysis,

 although even correctness testing usually misses codes which they already have deleted (khan ,2010,

pp.25-26). It would seem that correctness testing excels on performance testing on the level of the

accuracy of results. On the other hand, the work of Khan (2010, P.28) implies that reliability testing is

more different than security testing on the level of the framework because security testing focuses on

fixing the problems, in the contrary reliability testing is limited to deleting bugs without processing

them.

 4. Conclusion

This paper has focused on some obstacles which face programmers and developers. It has also described

four major techniques in order to reduce the number of bugs. Finally, it has compared these techniques

with each other. From the practical side, it is impossible to write software bug-free, therefore, software

engineers and programmers tend to use various techniques to reduce bugs and introduce an accurate

software in order to have final user satisfaction. Software sector is racing against time to introduce

software bug-free through using many techniques, in addition, some of these techniques are more

beneficial and more accurate than others. Software industry must focus on how to improve these

techniques in order to achieve accurate results. Moreover, developers and software engineers should pay

their attention to the security field and try to improve it in order to prohibit external bugs entering into

the software, hence reduce the types of bugs encountered by programmers.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (26), November (2019)

 ISSN: 2616-9185

www.mecsj.com

6

References:

1. Khan, M., 2010. Different Forms of Software Testing Techniques for Finding Errors. International

Journal of computer science, 7(3), pp.24-29.

2.Libicki, M., Ablon, L., and Webb, T., 2015. The defender's dilemma. Santa Monica : rand corporation.

3.Linfo.org. 2017. Bug definition by The Linux Information Project (LINFO). [online] Available at:

http://www.linfo.org/bug.html [Accessed 23 Nov. 2017].

4.Luo, L., Software Testing Techniques. Technology Maturation and Research Strategy, pp.4-8.

 5.Pan, J., 1999. Software Testing. Dependable Embedded Systems.

 6.Spinellis, D., 2006. Bug busters. IEEE Software, 23(2), pp.92-93.

