
Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

1

USAGE OF PROTOTYPING IN SOFTWARE TESTING

1st Khansaa Azeez Obayes Al-Husseini

Babylon Technical Insitute , Al-Furat Al-Awsat Technical University,51015

Babylon,Iraq.

1st Khansaa_aziz@yahoo.com

2nd Ali Hamzah Obaid

Babylon Technical Insitute , Al-Furat Al-Awsat Technical University,51015

Babylon,Iraq.

2nd alimk_iq@yahoo.com

Abstract: Prototyping process is an important part of software development. This

article describes usage of prototyping using Question – and – Answer memory

and visual prototype diesign to realize Prototyping software development model.

It also includes review of different models of software lifecycle with comparison

them with Prototyping model.

Key word: Question – and – Answer , Prototype, Software Development, RAD

model.

1. Introduction

One of the most important parts of software development is project design.

Software project designing as a process of project creation can be divided in two

large parts (very conditional): design of the functionality and design of user

interface. To design the functionality, tools such as UML and IDEF0 are used,

which have already become industry standards for software development. In the

design of the graphical user interface there are no established standards, there are

separate recommendations, techniques, design features, traditions, operating

conditions for software, etc. At the same time, an important, but not always

properly performed, part of this process is prototyping, i.e. the creation of a

prototype or prototype of a future system.

Prototypes can be different: paper, presentation, imitation, etc., up to exact

correspondence to the future program. Most of the modern integrated

development environments for software (IDE) allows to create something similar

to prototypes, but it is connected with specific knowledge of IDE and

programming language. At the same time, design of the user interface of large

software project is usually a task of an individual who does not necessarily

participate in programming. Therefore, it is useful to have a tool for user interface

prototyping adapted for fast creation of quite complex prototypes. As such tools,

various software packages were used: MS Visio, Corel Draw, Adobe Photoshop,

mailto:Khansaa_aziz@yahoo.com

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

2

Inkscape, GIMP. These programs are not specialized tools for prototyping the

graphical user interface, but due to the availability of graphical tools they allow

creating acceptable prototypes.

Recently, there are tendencies in the use of specialized tools, adapted

specifically for creating prototypes of the graphical user interface. And prototypes

can be created for all kinds of software: desktop applications, websites, programs

for smartphones.

 2. Fundamentals of the methodology of designing automated systems based

on CASE-technologies

The increasing complexity of modern automated systems and the

increasing demands on them determine the use of effective technologies for

creating and maintaining automated systems throughout the life cycle. Such

technologies, based on methodologies for the preparation of information systems

and corresponding integrated tool complexes, as well as those aimed at supporting

the full life cycle of an automated system or its main stages, have been called

CASE-technologies and CASE-tools [5].

For the successful implementation of the project of an automated system,

complete and consistent, functional and information models of the management

system should be built. The accumulated experience of designing these models

shows that this is a logically complex and time-consuming work that requires high

qualification of the specialists participating in it. However, in many cases, the

design of an automated system is carried out mainly on an intuitive level using

informal methods based on art, practical experience and expert assessments. In

addition, in the process of creating and operating automated systems, information

needs of users can be changed or refined, which further complicates the

development and maintenance of automated systems. From the listed deficiencies,

the approaches based on software and hardware of a special class - CASE-tools

implementing CASE-technologies for creation and maintenance of automated

systems are most free.

The term CASE (Computer Aided Software Engineering) refers to

software that supports the creation and maintenance of an automated system,

including requirements analysis and formulation, application software and

database design, code generation, testing, documentation, quality assurance,

configuration management and project management, as well as other processes.

CASE-tools together with the system software and hardware form a complete

development environment for the automated system.

One of the basic concepts of the methodology of designing an automated

system is the concept of the lifecycle of its software [3].

The software lifecycle is a continuous process that begins when a decision

is made about the need to create an automated system software and ends when it

is completely taken out of service

The structure of the software lifecycle is based on three groups of

processes: the main processes of the software lifecycle (acquisition, delivery,

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

3

development, operation, maintenance); auxiliary processes that support the

execution of the main processes (documentation, configuration management,

quality assurance, verification, attestation, evaluation, audit, problem solving);

organizational processes (project management, project infrastructure creation,

definition, evaluation and improvement of the lifecycle itself, training).

The development covers all the work on the creation of software and its

components (analysis, design and programming) in accordance with specified

requirements, including the design of the project and operational documentation,

the preparation of materials necessary to verify the operability and quality of

software projects, materials necessary for the organization of training of

personnel, and so on [4].

The operation includes work on the implementation of software

components (configuration of the database and user workplaces, provision of

operational documentation, training of personnel, etc.), localization of problems

arising in the course of operation with elimination of the causes of their

occurrence, modification of the software within the framework of the established

schedule, preparation of proposals for the improvement, development and

modernization of the system. Each process is characterized by certain tasks and

methods for their solution, the initial data obtained at the previous stage, and the

results. The results of the analysis, in particular, are functional models,

information models and corresponding diagrams.

The life cycle of software is iterative: the results of the next stage often

cause changes in the design solutions developed at earlier stages.

Several software life cycle models are known. The software life cycle

model is a structure that defines the sequence of execution and interrelationships

of processes, actions and tasks throughout the cycle. The life cycle model depends

on the specifics of the automated system and the specific conditions in which the

system is created and functioning.

To date, the following two main models of the life cycle have become

most widespread: the cascade method and the spiral model [6].

Cascade model is used, as a rule, for the development of homogeneous

automated systems, representing a single whole. Its main characteristic is the

division of the entire development into stages, and the transition from one stage to

the next occurs only after the work is completed on the current one. Each stage

ends with the release of a complete set of documentation, sufficient for the

development to be continued by another development team. Advantages of using

the cascading method are as follows: at each stage a complete set of design

documents is formed, which meets the criteria of completeness and consistency;

carried out in a logical sequence of stages of work allow you to schedule the

completion of all work and the corresponding costs. The cascade approach has

proven itself in the construction of automated systems for which, at the very

beginning of the development, it is possible to formulate all the requirements

accurately and fully in order to give developers the freedom to implement them

technically as best as possible. This category includes complex calculation

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

4

systems, real-time systems, etc. At the same time, this approach has a number of

drawbacks caused primarily by the fact that the actual process of creating an

automated system never completely fits into such a rigid scheme, there is a

constant need for a return to the previous stages of clarifying or revising earlier

decisions [4].

the cascade scheme of development of an automated system can be

considered as "simulation with an intermediate control". Inter-stage adjustments

provide greater reliability of the cascading model, although they increase the

entire development period. The main disadvantage of the cascade approach is a

significant delay with obtaining the results. The results are coordinated with users

only at the points planned after completion of each stage of work, the

requirements for the automated system are "frozen" in the form of a technical

assignment for the entire time it was created. Thus, users can make comments

only after the work on the system has been completely completed. In case of

inaccurate presentation of requirements or their changes during a long period of

creating an automated system, users receive a system that does not meet their

needs. Models (both functional and informational) of an automated object can

become obsolete simultaneously with their approval. The spiral model for the

development of an automated system is free from these shortcomings, which

focuses on the initial stages of the life cycle: analysis and design. At these stages,

the feasibility of technical solutions is verified by creating prototypes. Each coil

of the spiral corresponds to the creation of a fragment or version of the software, it

clarifies the objectives and characteristics of the project, determines its quality and

plans work for the next coil of the spiral. Thus, the details of the project are

deepened and sequentially specified and, as a result, a reasonable variant is

chosen, which is brought to realization. Iteration development reflects the

objectively existing spiral cycle of creating an automated system. Incomplete

completion of work at each stage allows you to proceed to the next stage, without

waiting for the complete completion of work on the current one. With the iterative

development method, the missing work can be performed at the next iteration [8].

The main task is to show the users of the automated system as soon as possible an

efficient product, thereby activating the process of clarifying and supplementing

requirements. The main problem of the spiral cycle is the determination of the

moment of transition to the next stage. To solve it, you need to introduce

temporary restrictions on each of the stages of the life cycle. The transition is

carried out in accordance with the plan, even if not all of the planned work is

completed. The plan is compiled on the basis of statistical data obtained in

previous projects and the personal experience of developers of automated

systems. Within the framework of the spiral life-cycle model, one of the

approaches to software development, known as Rapid Application Development

(Rapid Application Development) methodology, was widely adopted. This

methodology includes three components: a small team of programmers (from 2 to

10 people); A short but carefully worked out production schedule (from 2 to 6

months); a repetitive cycle in which developers as the application begins to take

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

5

shape, request and implement in the product the requirements obtained through

interaction with the customer. The development team should be a group of

professionals with expertise in analysis, design, code generation, and software

testing using CASE tools that can interact well with end users and transform their

offerings into working prototypes. The life cycle of software in accordance with

the RAD methodology consists of four phases: analysis and requirements

planning; designing; construction; implementation.

In the phase of analysis and requirements planning, users of the automated

system determine the functions that it must perform, identify the most priority of

them, which need to be worked out in the first place, describe information needs.

Formulation of requirements for an automated system is carried out mainly by

users under the guidance of development specialists. The scale of the project of

the automated system is limited, the time frames for each of the subsequent phases

are established. In addition, the very possibility of implementing the project in

specified amounts of funding, on available hardware, etc., is determined. The

result of this stage should be a list of priority functions of the future automated

system, as well as preliminary functional models of the automated system [7].

At the design stage, some users participate in the technical design of the

system under the guidance of development specialists. CASE tools are used to

quickly get working prototypes of applications. Users, directly interacting with

them, refine and supplement the system requirements that were not identified in

the previous phase. The system processes are discussed in more detail. The

functional model is analyzed and, if necessary, corrected. Each process is

considered in detail. If necessary, a partial prototype is created for the elementary

process: screen, dialog, report, eliminating ambiguities or ambiguities. The

requirements for differentiating access to data are established. At the same phase,

the necessary documentation is being determined. After a detailed determination

of the composition of the processes, the number of functional elements of the

system being developed is estimated and a decision is made to divide the

automated system into subsystems that can be implemented by one development

team for a time acceptable to RAD projects (60 to 90 days). Using CASE-tools,

the project of an automated system is distributed among different teams (the

functional model is divided). The result of this stage should be: a general

information model of the system; functional models of the system as a whole and

subsystems implemented by individual development teams; Precisely defined with

the help of CASE-tools interfaces between autonomously developed subsystems;

built prototypes of screens, reports, dialogues. All models and prototypes should

be obtained with the use of those CASE-means, which will be used later in the

construction of the system. This requirement is caused by the fact that in the

traditional approach when information about the project is transferred from stage

to stage, uncontrolled distortion of the data is quite often. The use of a single data

storage environment for the project allows this to be avoided. Unlike conventional

approaches that use specific prototyping tools not designed to build real

applications, and prototypes are discarded after eliminating ambiguities in the

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

6

design of an automated system, in the RAD approach, each prototype is passed to

the future system. Thus, more complete and useful information is transmitted to

the next phase.

At the stage of construction, the quick preparation of the application itself

is carried out. At the same time, the developers perform an iterative construction

of a real automated control system based on the models obtained in the previous

phase, as well as non-functional requirements. The program code is partially

generated by CASE-tools automatically. End users in this phase evaluate the

results and make adjustments if the system ceases to meet the previously specified

requirements during the development process. Testing of the automated system is

carried out in the process of development. After the completion of each separate

team of developers, this part of the system is gradually integrated with the rest, the

full program code is generated, the joint work of this part of the application is

tested, and then the whole system is tested. The physical design of the automated

system is completed, including: determining the need for data distribution;

analysis of the use of data; physical design of the database; Determine the

requirements for hardware resources and ways to increase productivity, complete

the development of project documentation. The result of this stage is a ready-

made automated system that meets all agreed requirements [7].

During the implementation phase of the automated system, users are

trained and organizational changes are made. For this stage, it is characteristic that

simultaneously with the introduction of the new automated system, work is

carried out with the existing management system until the new one is fully

implemented. Since the phase of construction is rather short, planning and

preparation for implementation must begin in advance, as a rule, at the design

stage of the system. The above scheme for developing an automated system is not

final. Various options are possible, depending, for example, on the initial

conditions in which an automated system is being created: a) a completely new

system is being developed; b) an enterprise survey was conducted and a model of

its activity exists; c) the enterprise already has an automated system that can be

used as an initial prototype or it must be integrated with the newly developed

control system.

3. Software lifecycle models

Under the life cycle model of a software product development is

understood the structure that determines the sequence of execution and

interconnection of processes, actions and tasks performed during the life cycle of

the software product development. The following models of the life cycle of

software development were most widely spread (Table 1. Brief characteristics of

automated system life cycle models): cascade model, or waterfall model; V-

shaped model; prototype model; a rapid application development model, or a

RAD model; an incremental model; spiral model [6].

Table 1. Brief characteristics of each of the listed models

Name Characteristics

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

7

Cascade

model

Straightforward and easy to use. Constant strict control over the

progress of work is necessary. Developed software is not available

for changes

V-shaped

model

Easy to use. Particular importance is given to testing and comparing

the results of the testing and design phases

Prototyping

model

A «quick» partial implementation of the system is created before the

final requirements are formulated. Provides feedback between users

and developers in the process of project implementation. The

requirements are not complete

RAD

model

Project teams are small (3 ... 7 people) and are made up of highly

qualified specialists. Reduced development cycle time (up to 3

months) and improved performance. Code reuse and automation of

the development process

Multipass

model

A fast working system is created. Reduces the possibility of making

changes in the development process. It is not possible to go from the

current implementation to the new version during the construction

of the current partial implementation

Spiral

model

Covers the cascade model. Separates the phases into smaller parts.

Allows you to flexibly design. Analyzes and manages risks. Users

are introduced to the software product at an earlier stage thanks to

prototypes

In homogeneous information systems of the 1970s and 1980s, application

software products were a single whole. To develop this type of software product,

a cascade model or "waterfall" was used.

The cascade model of the software product is similar to the model of an

automated control system.

This process is, as a rule, iterative: the results of the next stage often cause

changes in the design solutions developed at earlier stages. Thus, there is a

constant need to return to previous stages and refine or revise previous decisions.

As a result, the actual development process takes a different form [4].

This model (Fig. 1) was developed as a kind of cascade model, in which

special attention is paid to the verification and certification of the software

product. The model shows that product testing is discussed, designed and planned,

starting from the early stages of the development life cycle.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

8

Figure 1. V-shaped model

From the cascade model, the V-model inherited a consistent structure,

according to which each subsequent phase begins only after the successful

completion of the previous phase.

This model is based on a systematic approach to the problem, for which

four basic steps are identified: analysis, design, development and review. During

the analysis, the project is planned and requirements are drawn up. The design is

divided into high-level and detailed (low-level). Development includes coding,

review - various types of testing.

On the model, the relationships between analytical phases and design

phases that precede coding and testing are well seen. The dashed arrows show that

these phases must be considered in parallel.

The model includes the following phases:

Forming of requirements to the project and planning - the system

requirements are determined and work planning is carried out;

Forming of requirements to the product and their analysis - a complete

specification of the requirements to the software product is compiled [10];

High-level design - determines the structure of the software, the

relationship between its main components and the functions they perform;

Detailed design - defines the algorithm for each component;

Coding - converts algorithms into ready-made software;

Unit testing - each component or module of the software product is

checked;

Integration testing - integration of the software product and its testing;

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

9

System testing - the functioning of the software product is checked after its

placement in the hardware environment in accordance with the requirements

specification;

Operation and maintenance - the launch of the software product in

production. At this phase, the software product may be amended and upgraded.

Advantages of the V-shaped model:

1) A major role is attached to the verification and certification of the

software product, from the early stages of its development, all actions

are planned;

2) Certification and verification of not only the software product itself,

but also all internal and external data obtained are assumed;

3) The progress of the work can be easily monitored, since the completion

of each phase is a reference point.

In addition to these advantages, the model has a number of shortcomings:

Iterations between phases are not taken into account; You can not make

changes at different stages of the life cycle; testing requirements is too late, so

making changes affects the performance schedule [9].

This model should be used in the development of software products, the

main requirement for which is high reliability.

4. Prototyping model

The prototyping model allows you to create a prototype of a software

product before or during the stage of compiling requirements for the software

product. Potential users work with this prototype, identifying its strengths and

weaknesses, the results are reported to the developers of the software product.

Thus, feedback is provided between users and developers, which is used to change

or correct the specification of requirements for the software product. As a result of

this work, the product will reflect the real needs of users.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

10

Figure 2. Prototyping model

The lifecycle of software development begins with the development of a

project plan, then a quick analysis is performed, after which a database, a user

interface is created and the necessary functions are developed. As a result of this

work, we obtain a document containing a partial specification of the requirements

for the software product. This document is the basis for the iteration cycle of rapid

prototyping [7].

As a result of prototyping, the developer demonstrates to users a ready-

made prototype, and users evaluate its functioning. After this, problems are

identified, which users and developers work together to resolve. This process

continues until the users are satisfied with the degree of compliance of the

software product with the requirements set for it. Then the prototype is

demonstrated to users in order to obtain suggestions for its improvement, which

are included in consecutive iterations until the working model is satisfactory.

After that, users receive the official approval (approval) of the functionality of the

prototype and perform its final conversion to the finished software product.

The prototype model has a number of advantages:

1) The interaction of the customer with the system being developed

begins at an early stage;

2) Due to the customer's reaction to the prototype, the number of

inaccuracies in the requirements is minimized;

3) There is less likelihood of confusion, distortion of information or

misunderstandings in determining requirements for software products,

which leads to the creation of a better software product;

4) In the course of development it is always possible to take into account

new, even unexpected requirements of the customer;

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

11

5) The prototype is a formal specification embodied in the software

product;

6) The prototype allows very flexible design and development, including

several iterations in all phases of the development life cycle;

7) The customer always sees progress in the process of developing a

software product;

8) The possibility of contradictions between developers and customers is

minimized;

9) Reduces the number of improvements, which reduces the cost of

development: emerging problems are solved in the early stages, which

drastically reduces the costs of their elimination; customers participate

in the development process throughout the life cycle and ultimately are

more satisfied with the result of the work [3].

In addition to these advantages of the prototyping model, there are a

number of disadvantages:

1) The solution of complex problems can be postponed to the future;

2) The customer may prefer to receive a prototype, rather than a complete

full version of the software product;

3) Prototyping can be unnecessarily prolonged;

4) Before starting work, it is not known how many iterations will have to

be performed.

Figure 3. Rapid application development model

The prototyping model is recommended in the following cases:

1) The requirements for the software product are not known in advance;

2) The requirements are not constant or unsuccessfully formulated;

3) Requirements need to be clarified;

4) Need to test the concept;

5) There is a need for a user interface;

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

12

6) A new, unparalleled development is in progress;

7) Developers are not sure which solution to choose.

In the RAD model (Fig. 3), the end user plays a decisive role. In close

interaction with the developers, he participates in the formation of requirements

and approbation of them on working prototypes. Thus, at the beginning of the life

cycle, the end user gets most of the work, but as a result, the created system is

formed more quickly.

In the traditional life cycle of development, most of the work is done by

programming and testing. When automating programming and reusing code used

in the RAD-model, most of the work is planning and designing.

In the figure (Fig. 3), explaining the principle of the RAD-model, the

stages of the development process are indicated and the participation of customers

(a dashed line) is shown on each of them.

The model includes the following phases:

Requirements preparation and planning - are carried out using the so-

called method of joint requirements planning (the planning of work on the

creation of the software product and the formulation of requirements for the

software product are carried out simultaneously), which consists in the structural

analysis and discussion of the tasks being solved;

Description of the user - the design of the software product, performed

with the direct participation of the customer;

Creation - detailed design, coding and testing of the software product, as

well as delivery to the customer;

Maintenance - acceptance tests, software installation and user training.

The model has the following advantages:

1) Using modern tools can reduce the development cycle time;

2) Attraction to the customer's work minimizes the risk that he will

remain dissatisfied with the finished software product;

3) The components of existing programs are reused.

At the same time, it has inherent drawbacks [6]:

1) If customers can not constantly participate in the development process,

then this can negatively affect the software product;

2) Highly skilled personnel who can use modern tools are needed for

work;

3) There is a risk that the work on the software product will never be

completed , as it can be looped, so you should always stop in time.

This RAD-model can be used to develop software products that can be

modeled well, when the requirements for software products are well known, and

the customer can take a direct part in the development process.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

13

5. Conclusion

The life cycle of automated information systems is a continuous process

that begins when a decision is made about the need to create an IS and ends at the

time of its complete removal from service.

The life cycle model is a structure that determines the sequence of

implementation and interconnection of processes, actions and tasks performed

during the LC.

The most common are two main models of the LC:

· Cascade model (70-85 years);

· Spiral model (86-90 years).

The structure of the life cycle is based on three groups of processes:

· The main processes of the life cycle (acquisition, supply,

development, operation, maintenance);

· Auxiliary processes (documentation, configuration management,

quality assurance, attestation, audit, problem solving);

· Organizational processes (project management, project infrastructure

creation, improvement of the life cycle, training).

CASE-technology is a technology based on the methodologies for the

preparation of information systems and corresponding integrated tool complexes,

as well as oriented towards supporting the full life cycle of an automated system

or its main stages.

CASE (Computer Aided Software Engineering) means software that

supports the creation and maintenance of an automated system, including the

analysis and formulation of requirements, the design of application software and

databases, code generation, testing, documentation, quality assurance,

configuration management and project management, as well as other processes.

CASE-tools together with the system software and hardware form a complete

environment for the development of AS.

Under the life cycle model of a software product development is

understood the structure that determines the sequence of execution and

interconnection of processes, actions and tasks performed during the life cycle of

the software product development. The following models of the life cycle of the

software product development were most widely used: cascade model, or

waterfall; V-shaped model; Prototyping model (prototypemodel); model of rapid

application development, or RAD-model (rapid application development model);

multipass(incremental) model; spiral model.

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

14

6. References

 Bashmakov AI, Bashmakov IA Development of computer textbooks and

training systems .- M .: Informatsinno-izdatelskiy dom.

 Bashmakov IA, Rabinovich PD Analysis of models of semantic networks

as a mathematical apparatus of representation of knowledge about

educational material // Handbook. Engineering Journal. No. 7.- 2002.- Pp.

55-60.

 Buch G., Rambo D., Jacobson A. Language of the UML .- M .: DMK,

2000.- 432 p.

Vendrov A.M. Designing of software for economic information systems. -

Moscow: Finance and Statistics, 2012. - 352p.

 Voit NN. Development of methods and tools for adaptive learning of

project activities // Information technologies: interuniversity collection of

scientific papers .- Ulyanovsk: UlSTU: 2008.-Pp. 42-45.

 Gagarina L.G. Fundamentals of technology and software development:

Textbook - M FORUM - INFRA - M. 2012.

 Dorrer GA, Rudakova GM Modeling of the process of interactive learning

on the basis of formalities of colored Petri nets // Vestnik KrasGU .- 2004.

 Informatics: A Textbook edited by N. Makarova. - M.: Finance and

Statistics., 2011. - 480s.

Kaner S., Folk D., Ken Nguyen E. Software Testing: Trans. with English.

- Kiev: DiSoft, 2011. - 544s.

 Semenov M.I. Trubilin IT, Loiko VI Baranovskaya, TP Architecture of

Computer Systems and Networks Study Guide - M Finance and Statistics,

2013. - 320s.

 Soviets B.Ya. Tsekhankovsky V.V. Information Technology - M High

School, 2013.

 Sommerville I. Software Engineering. - Moscow: SPB .: Kiev: Izd. house

"Williams", 2012. - 624s.

 Fridman AL Fundamentals of object-oriented development of software

systems. - Moscow: Finance and Statistics, 2011. - 200s.

 Sosnin P.I. Pseudo-code control of work flows in the design of automated

systems. 2012.

 Al-Husseini, Khansaa Azeez Obayes. Risk Management Tools In The

Design of Automated Systems. Interactive Systems: Problems of Human -

Computer Interaction. – Collection of scientific papers. − Ulyanovsk:

USTU, 2017. − 290 p.

 Khansaa Azeez Obayes Al-Husseini ,Information security in the field of

technical development and information, Interactive Systems: Problems Of

Human-Computer Interaction Ulyanovsk: USTU, 71-80 p. 2015.

 Obaid, Ali Hamzah. Information hiding techniques for steganography and

digital watermarking. UDC 681.518 (04) Interactive Systems: Problems of

https://elibrary.ru/item.asp?id=30377722
https://elibrary.ru/item.asp?id=30377722

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications

(MECSJ)

ISSUE (14), Nov (2018)

www.mescj.com

15

Human-Computer Interaction.–Collection of scientific papers.-

Ulyanovsk: USTU, 2015, 306 p. 2015.

 Obaid, Ali Hmazah, Tools for conceptual-algorithmic prototyping in

solving design problems in the development of systems with software,

Interactive Systems: Problems Of Human-Computer Interaction

Ulyanovsk: USTU, 2017-25-27 P.

 Khansaa Azeez Obayes Al-Husseini / Ali Hamzah Obaid , Development of

Risk Management Tools in Question-Answering Based Software Design

Environment , International Journal of Computer Science and Mobile

Computing - IJCSMC, Vol. 7, Issue. 6, June 2018, pg.165 – 174 .

	Abstract: Prototyping process is an important part of software development. This article describes usage of prototyping using Question – and – Answer memory and visual prototype diesign to realize Prototyping software development model. It also includ...
	1. Introduction
	2. Fundamentals of the methodology of designing automated systems based on CASE-technologies
	3. Software lifecycle models
	4. Prototyping model
	5. Conclusion
	6. References

